/* pnmtojbig - PNM to JBIG converter This program was derived from pbmtojbg.c in Markus Kuhn's JBIG-KIT package by Bryan Henderson on 2000.05.11 The main difference is that this version uses the Netpbm libraries. */ /* The JBIG standard doesn't say which end of the scale is white and which end is black in a BIE. It has a recommendation in terms of foreground and background (a concept which does not exist in the Netpbm formats) for single-plane images, and is silent for multi-plane images. Kuhn's implementation of the JBIG standard says if the BIE has a single plane, then in that plane a zero bit means white and a one bit means black. But if it has multiple planes, a composite zero value means black and a composite maximal value means white. Actually, Kuhn's pbmtojbg doesn't even implement this, but rather bases the distinction on whether the input file was PBM or PGM. This means that if you convert a PGM file with maxval 1 to a JBIG file and then back, the result (which is a PBM file) is the inverse of what you started with. Same if the PGM file has maxval > 1 but you use a -t option to write only one plane. We assume this is just a bug in pbmtojpg and that hardly anybody does this. So we adopt the implementation described above. This means that after jbg_split_planes() hands us a set of bitmap planes, if there is only one of them, we have to invert all the bits in it. */ #include #include #include #include "pnm.h" #include "jbig.h" char *progname; /* global pointer to argv[0] */ static unsigned long total_length = 0; /* used for determining output file length */ /* * malloc() with exception handler */ static void *checkedmalloc(size_t n) { void *p; if ((p = malloc(n)) == NULL) { fprintf(stderr, "Sorry, not enough memory available!\n"); exit(1); } return p; } /* * Callback procedure which is used by JBIG encoder to deliver the * encoded data. It simply sends the bytes to the output file. */ static void data_out(unsigned char *start, size_t len, void *file) { fwrite(start, len, 1, (FILE *) file); total_length += len; return; } /* * Print usage message and abort */ static void usage(void) { fprintf(stderr, "%s: See man page for documentation", progname); exit(1); } int main (int argc, char **argv) { FILE *fin = stdin, *fout = stdout; const char *fnin = "", *fnout = ""; int i; int all_args = 0, files = 0; int bpp, planes, encode_planes = -1; int cols, rows; int bytes_per_line; xelval maxval; int format; xel* pnm_row; unsigned char **bitmap; /* This is an array of the planes of the image. Each plane is a two-dimensional array of pixels laid out in row-major format. format with each pixel being one bit. A byte in the array contains 8 pixels left to right, msb to lsb. */ unsigned char *image; /* This is a representation of the entire image with 'bpp' bytes per pixel. The 'bpp' bytes for each pixel are arranged MSB first and its numerical value is the value from the PNM input. The pixels are laid out in row-major format in this rectangle. The point of this data structure is it is what jbg_split_planes() wants for input. */ struct jbg_enc_state s; int verbose = 0, delay_at = 0, use_graycode = 1; long mwidth = 640, mheight = 480; int dl = -1, dh = -1, d = -1, l0 = -1, mx = -1; int options = JBG_TPDON | JBG_TPBON | JBG_DPON; int order = JBG_ILEAVE | JBG_SMID; pbm_init(&argc, argv); /* parse command line arguments */ progname = argv[0]; for (i = 1; i < argc; i++) { int j; if (!all_args && argv[i][0] == '-') if (argv[i][1] == '\0' && files == 0) ++files; else for (j = 1; j > 0 && argv[i][j]; j++) switch(tolower(argv[i][j])) { case '-' : all_args = 1; break; case 'v': verbose = 1; break; case 'b': use_graycode = 0; break; case 'c': delay_at = 1; break; case 'x': if (++i >= argc) usage(); j = -1; mwidth = atol(argv[i]); break; case 'y': if (++i >= argc) usage(); j = -1; mheight = atol(argv[i]); break; case 'o': if (++i >= argc) usage(); j = -1; order = atoi(argv[i]); break; case 'p': if (++i >= argc) usage(); j = -1; options = atoi(argv[i]); break; case 'l': if (++i >= argc) usage(); j = -1; dl = atoi(argv[i]); break; case 'h': if (++i >= argc) usage(); j = -1; dh = atoi(argv[i]); break; case 'q': d = 0; break; case 'd': if (++i >= argc) usage(); j = -1; d = atoi(argv[i]); break; case 's': if (++i >= argc) usage(); j = -1; l0 = atoi(argv[i]); break; case 't': if (++i >= argc) usage(); j = -1; encode_planes = atoi(argv[i]); break; case 'm': if (++i >= argc) usage(); j = -1; mx = atoi(argv[i]); break; default: usage(); } else switch (files++) { case 0: if (argv[i][0] != '-' || argv[i][1] != '\0') { fnin = argv[i]; fin = fopen(fnin, "rb"); if (!fin) { fprintf(stderr, "Can't open input file '%s", fnin); perror("'"); exit(1); } } break; case 1: fnout = argv[i]; fout = fopen(fnout, "wb"); if (!fout) { fprintf(stderr, "Can't open input file '%s", fnout); perror("'"); exit(1); } break; default: usage(); } } pnm_readpnminit(fin, &cols, &rows, &maxval, &format); if (PNM_FORMAT_TYPE(format) != PGM_TYPE && PNM_FORMAT_TYPE(format) != PBM_TYPE) pm_error("This program accepts PBM and PGM input only. Try Ppmtopgm."); planes = pm_maxvaltobits(maxval); /* In a JBIG file, maxvals are determined only by the number of planes, so must be a power of 2 minus 1 */ if ((1UL << planes)-1 != maxval) pm_error("Input image has unacceptable maxval: %d. JBIG files must " "have a maxval which is a power of 2 minus 1. Use " "Ppmdepth to adjust the image's maxval", maxval); bpp = (planes + 7) / 8; if (encode_planes < 0 || encode_planes > planes) encode_planes = planes; bytes_per_line = (cols + 7) / 8; pnm_row = pnm_allocrow(cols); /* row buffer */ image = checkedmalloc(cols * rows * bpp); { /* Read the input image and put it into image[] */ /* We could pick up a lot of speed, at the expense of code maintainability, by separating out the PBM case and doing a pbm_readpbmrow_packed() into bitmap[]. */ int row; for (row = 0; row < rows; row++) { int col; pnm_readpnmrow(fin, pnm_row, cols, maxval, format); for (col = 0; col < cols; col++) { int j; /* Move each byte of the sample into image[], MSB first */ /* We could speed up the common bpp=1 case enormously here by making it a special case. */ for (j = 0; j < bpp; j++) image[(((row*cols)+col) * bpp) + j] = (unsigned char) PNM_GET1(pnm_row[col]) >> ((bpp-1-j) * 8); } } } pnm_freerow(pnm_row); /* Convert image[] into bitmap[] */ { int i; bitmap = (unsigned char **) checkedmalloc(sizeof(unsigned char *) * encode_planes); for (i = 0; i < encode_planes; i++) bitmap[i] = (unsigned char *) checkedmalloc(bytes_per_line * rows); } jbg_split_planes(cols, rows, planes, encode_planes, image, bitmap, use_graycode); free(image); /* Invert the image if it is just one plane. See top of this file for an explanation why. */ if (encode_planes == 1) { int row; for (row = 0; row < rows; row++) { int i; for (i = 0; i < bytes_per_line; i++) bitmap[0][(row*bytes_per_line) + i] ^= 0xff; } } /* Apply JBIG algorithm and write BIE to output file */ /* initialize parameter struct for JBIG encoder*/ jbg_enc_init(&s, cols, rows, encode_planes, bitmap, data_out, fout); /* Select number of resolution layers either directly or based * on a given maximum size for the lowest resolution layer */ if (d >= 0) jbg_enc_layers(&s, d); else jbg_enc_lrlmax(&s, mwidth, mheight); /* Specify a few other options (each is ignored if negative) */ if (delay_at) options |= JBG_DELAY_AT; jbg_enc_lrange(&s, dl, dh); jbg_enc_options(&s, order, options, l0, mx, -1); /* now encode everything and send it to data_out() */ jbg_enc_out(&s); /* give encoder a chance to free its temporary data structures */ jbg_enc_free(&s); /* check for file errors and close fout */ if (ferror(fout) || fclose(fout)) { fprintf(stderr, "Problem while writing output file '%s", fnout); perror("'"); exit(1); } /* In case the user wants to know all the gory details ... */ if (verbose) { fprintf(stderr, "Information about the created JBIG bi-level image entity " "(BIE):\n\n"); fprintf(stderr, " input image size: %ld x %ld pixel\n", s.xd, s.yd); fprintf(stderr, " bit planes: %d\n", s.planes); if (s.planes > 1) fprintf(stderr, " encoding: %s code, MSB first\n", use_graycode ? "Gray" : "binary"); fprintf(stderr, " stripes: %ld\n", s.stripes); fprintf(stderr, " lines per stripe in layer 0: %ld\n", s.l0); fprintf(stderr, " total number of diff. layers: %d\n", s.d); fprintf(stderr, " lowest layer in BIE: %d\n", s.dl); fprintf(stderr, " highest layer in BIE: %d\n", s.dh); fprintf(stderr, " lowest layer size: %lu x %lu pixel\n", jbg_ceil_half(s.xd, s.d - s.dl), jbg_ceil_half(s.yd, s.d - s.dl)); fprintf(stderr, " highest layer size: %lu x %lu pixel\n", jbg_ceil_half(s.xd, s.d - s.dh), jbg_ceil_half(s.yd, s.d - s.dh)); fprintf(stderr, " option bits:%s%s%s%s%s%s%s\n", s.options & JBG_LRLTWO ? " LRLTWO" : "", s.options & JBG_VLENGTH ? " VLENGTH" : "", s.options & JBG_TPDON ? " TPDON" : "", s.options & JBG_TPBON ? " TPBON" : "", s.options & JBG_DPON ? " DPON" : "", s.options & JBG_DPPRIV ? " DPPRIV" : "", s.options & JBG_DPLAST ? " DPLAST" : ""); fprintf(stderr, " order bits:%s%s%s%s\n", s.order & JBG_HITOLO ? " HITOLO" : "", s.order & JBG_SEQ ? " SEQ" : "", s.order & JBG_ILEAVE ? " ILEAVE" : "", s.order & JBG_SMID ? " SMID" : ""); fprintf(stderr, " AT maximum x-offset: %d\n" " AT maximum y-offset: %d\n", s.mx, s.my); fprintf(stderr, " length of output file: %lu byte\n\n", total_length); } return 0; }