/* pnmscale.c - read a portable anymap and scale it ** ** Copyright (C) 1989, 1991 by Jef Poskanzer. ** ** Permission to use, copy, modify, and distribute this software and its ** documentation for any purpose and without fee is hereby granted, provided ** that the above copyright notice appear in all copies and that both that ** copyright notice and this permission notice appear in supporting ** documentation. This software is provided "as is" without express or ** implied warranty. ** ** Modified: ** */ #include #include "pnm.h" /* The pnm library allows us to code this program without branching cases for PGM and PPM, but we do the branch anyway to speed up processing of PGM images. */ struct cmdline_info { /* All the information the user supplied in the command line, in a form easy for the program to use. */ char *input_filespec; /* Filespecs of input files */ unsigned int xsize; unsigned int ysize; float xscale; float yscale; unsigned int xbox; unsigned int ybox; unsigned int pixels; unsigned int verbose; }; static void parse_command_line(int argc, char ** argv, struct cmdline_info *cmdline_p) { /*---------------------------------------------------------------------------- Note that the file spec array we return is stored in the storage that was passed to us as the argv array. -----------------------------------------------------------------------------*/ optStruct *option_def = malloc(100*sizeof(optStruct)); /* Instructions to OptParseOptions2 on how to parse our options. */ optStruct2 opt; unsigned int option_def_index; int xysize, xsize, ysize, pixels; int reduce; float xscale, yscale, scale_parm; option_def_index = 0; /* incremented by OPTENTRY */ OPTENTRY(0, "xsize", OPT_UINT, &xsize, 0); OPTENTRY(0, "width", OPT_UINT, &xsize, 0); OPTENTRY(0, "ysize", OPT_UINT, &ysize, 0); OPTENTRY(0, "height", OPT_UINT, &ysize, 0); OPTENTRY(0, "xscale", OPT_FLOAT, &xscale, 0); OPTENTRY(0, "yscale", OPT_FLOAT, &yscale, 0); OPTENTRY(0, "pixels", OPT_UINT, &pixels, 0); OPTENTRY(0, "xysize", OPT_FLAG, &xysize, 0); OPTENTRY(0, "verbose", OPT_FLAG, &cmdline_p->verbose, 0); OPTENTRY(0, "reduce", OPT_UINT, &reduce, 0); /* Set the defaults. -1 = unspecified */ xsize = -1; ysize = -1; xscale = -1.0; yscale = -1.0; pixels = -1; xysize = 0; reduce = -1; cmdline_p->verbose = FALSE; opt.opt_table = option_def; opt.short_allowed = FALSE; /* We have no short (old-fashioned) options */ opt.allowNegNum = FALSE; /* We have no parms that are negative numbers */ pm_optParseOptions2(&argc, argv, opt, 0); /* Uses and sets argc, argv, and some of *cmdline_p and others. */ if (xsize == 0) pm_error("-xsize/width must be greater than zero."); if (ysize == 0) pm_error("-ysize/height must be greater than zero."); if (xscale != -1.0 && xscale <= 0.0) pm_error("-xscale must be greater than zero."); if (yscale != -1.0 && yscale <= 0.0) pm_error("-yscale must be greater than zero."); if (reduce <= 0 && reduce != -1) pm_error("-reduce must be greater than zero."); if (xsize != -1 && xscale != -1) pm_error("Cannot specify both -xsize/width and -xscale."); if (ysize != -1 && yscale != -1) pm_error("Cannot specify both -ysize/height and -yscale."); if (xysize && (xsize != -1 || xscale != -1 || ysize != -1 || yscale != -1 || reduce != -1 || pixels != -1) ) pm_error("Cannot specify -xysize with other dimension options."); if (pixels != -1 && (xsize != -1 || xscale != -1 || ysize != -1 || yscale != -1 || reduce != -1) ) pm_error("Cannot specify -pixels with other dimension options."); if (reduce != -1 && (xsize != -1 || xscale != -1 || ysize != -1 || yscale != -1) ) pm_error("Cannot specify -reduce with other dimension options."); if (pixels == 0) pm_error("-pixels must be greater than zero"); /* Get the program parameters */ if (xysize) { /* parameters are xbox, ybox, and optional filespec */ scale_parm = 0.0; if (argc-1 < 2) pm_error("You must supply at least two parameters with -xysize:\n " "x and y dimensions of the bounding box."); else if (argc-1 > 3) pm_error("Too many arguments. With -xysize, you need 2 or 3 " "arguments."); else { cmdline_p->xbox = atoi(argv[1]); cmdline_p->ybox = atoi(argv[2]); if (argc-1 < 3) cmdline_p->input_filespec = "-"; else cmdline_p->input_filespec = argv[3]; } } else { cmdline_p->xbox = 0; cmdline_p->ybox = 0; if (xsize == -1 && xscale == -1 && ysize == -1 && yscale == -1 && pixels == -1 && reduce == -1) { /* parameters are scale factor and optional filespec */ if (argc-1 < 1) pm_error("With no dimension options, you must supply at least " "one parameter: \nthe scale factor."); else { scale_parm = atof(argv[1]); if (scale_parm == 0.0) pm_error("The scale parameter %s is not " "a positive number.", argv[1]); else { if (argc-1 < 2) cmdline_p->input_filespec = "-"; else cmdline_p->input_filespec = argv[2]; } } } else { /* Only parameter allowed is optional filespec */ if (argc-1 < 1) cmdline_p->input_filespec = "-"; else cmdline_p->input_filespec = argv[1]; if (reduce != -1) { scale_parm = ((double) 1.0) / ((double) reduce); pm_message("reducing by %d gives scale factor of %f.", reduce, scale_parm); } else scale_parm = 0.0; } } cmdline_p->xsize = xsize == -1 ? 0 : xsize; cmdline_p->ysize = ysize == -1 ? 0 : ysize; cmdline_p->pixels = pixels == -1 ? 0 : pixels; if (scale_parm) { cmdline_p->xscale = scale_parm; cmdline_p->yscale = scale_parm; } else { cmdline_p->xscale = xscale == -1.0 ? 0.0 : xscale; cmdline_p->yscale = yscale == -1.0 ? 0.0 : yscale; } } static void compute_output_dimensions(const struct cmdline_info cmdline, const int rows, const int cols, int * newrowsP, int * newcolsP) { if (cmdline.pixels) { if (rows * cols <= cmdline.pixels) { *newrowsP = rows; *newcolsP = cols; } else { const double scale = sqrt( (float) cmdline.pixels / ((float) cols * (float) rows)); *newrowsP = rows * scale; *newcolsP = cols * scale; } } else if (cmdline.xbox) { const double aspect_ratio = (float) cols / (float) rows; const double box_aspect_ratio = (float) cmdline.xbox / (float) cmdline.ybox; if (box_aspect_ratio > aspect_ratio) { *newrowsP = cmdline.ybox; *newcolsP = *newrowsP * aspect_ratio + 0.5; } else { *newcolsP = cmdline.xbox; *newrowsP = *newcolsP / aspect_ratio + 0.5; } } else { if (cmdline.xsize) *newcolsP = cmdline.xsize; else if (cmdline.xscale) *newcolsP = cmdline.xscale * cols + .5; else if (cmdline.ysize) *newcolsP = cols * ((float) cmdline.ysize/rows) +.5; else *newcolsP = cols; if (cmdline.ysize) *newrowsP = cmdline.ysize; else if (cmdline.yscale) *newrowsP = cmdline.yscale * rows +.5; else if (cmdline.xsize) *newrowsP = rows * ((float) cmdline.xsize/cols) +.5; else *newrowsP = rows; } /* If the calculations above yielded (due to rounding) a zero dimension, we fudge it up to 1. We do this rather than considering it a specification error (and dying) because it's friendlier to automated processes that work on arbitrary input. It saves them having to check their numbers to avoid catastrophe. */ if (*newcolsP < 1) *newcolsP = 1; if (*newrowsP < 1) *newrowsP = 1; } static void horizontal_scale(const xel inputxelrow[], xel newxelrow[], const int cols, const int newcols, const float xscale, const int format, const xelval maxval, float * const stretchP) { /*---------------------------------------------------------------------------- Take the input row inputxelrow[], which is 'cols' columns wide, and scale it by a factor of 'xscale', to create the output row newxelrow[], which is 'newcols' columns wide. 'format' and 'maxval' describe the Netpbm format of the both input and output rows. -----------------------------------------------------------------------------*/ float r, g, b; float fraccoltofill, fraccolleft; unsigned int col; unsigned int newcol; newcol = 0; fraccoltofill = 1.0; /* Output column is "empty" now */ r = g = b = 0; /* initial value */ for (col = 0; col < cols; ++col) { /* Process one pixel from input ('inputxelrow') */ fraccolleft = xscale; /* Output all columns, if any, that can be filled using information from this input column, in addition what's already in the output column. */ while (fraccolleft >= fraccoltofill) { /* Generate one output pixel in 'newxelrow'. It will consist of anything accumulated from prior input pixels in 'r','g', and 'b', plus a fraction of the current input pixel. */ switch (PNM_FORMAT_TYPE(format)) { case PPM_TYPE: r += fraccoltofill * PPM_GETR(inputxelrow[col]); g += fraccoltofill * PPM_GETG(inputxelrow[col]); b += fraccoltofill * PPM_GETB(inputxelrow[col]); PPM_ASSIGN( newxelrow[newcol], min(maxval, (int) (r + 0.5)), min(maxval, (int) (g + 0.5)), min(maxval, (int) (b + 0.5)) ); break; default: g += fraccoltofill * PNM_GET1(inputxelrow[col]); PNM_ASSIGN1( newxelrow[newcol], min(maxval, (int) (g + 0.5))); break; } fraccolleft -= fraccoltofill; /* Set up to start filling next output column */ newcol++; fraccoltofill = 1.0; r = g = b = 0.0; } /* There's not enough left in the current input pixel to fill up a whole output column, so just accumulate the remainder of the pixel into the current output column. */ if (fraccolleft > 0.0) { switch (PNM_FORMAT_TYPE(format)) { case PPM_TYPE: r += fraccolleft * PPM_GETR(inputxelrow[col]); g += fraccolleft * PPM_GETG(inputxelrow[col]); b += fraccolleft * PPM_GETB(inputxelrow[col]); break; default: g += fraccolleft * PNM_GET1(inputxelrow[col]); break; } fraccoltofill -= fraccolleft; } } if (newcol < newcols-1 || newcol > newcols) pm_error("Internal error: last column filled is %d, but %d " "is the rightmost output column.", newcol, newcols-1); if (newcol < newcols ) { /* We were still working on the last output column when we ran out of input columns. This would be because of rounding down, and we should be missing only a tiny fraction of that last output column. */ *stretchP = fraccoltofill; switch (PNM_FORMAT_TYPE(format)) { case PPM_TYPE: r += fraccoltofill * PPM_GETR(inputxelrow[cols-1]); g += fraccoltofill * PPM_GETG(inputxelrow[cols-1]); b += fraccoltofill * PPM_GETB(inputxelrow[cols-1]); PPM_ASSIGN(newxelrow[newcol], min(maxval, (int) (r + 0.5)), min(maxval, (int) (g + 0.5)), min(maxval, (int) (b + 0.5)) ); break; default: g += fraccoltofill * PNM_GET1(inputxelrow[cols-1]); PNM_ASSIGN1( newxelrow[newcol], min(maxval, (int) (g + 0.5))); break; } } else *stretchP = 0; } int main(int argc, char **argv ) { struct cmdline_info cmdline; FILE* ifp; xel* xelrow; xel* tempxelrow; xel* newxelrow; int rows, cols, format, newformat, rowsread, newrows, newcols; int row, col, needtoreadrow; xelval maxval, newmaxval; float xscale, yscale; float fracrowtofill, fracrowleft; float* rs; float* gs; float* bs; pnm_init( &argc, argv ); parse_command_line(argc, argv, &cmdline); ifp = pm_openr(cmdline.input_filespec); pnm_readpnminit( ifp, &cols, &rows, &maxval, &format ); /* Promote PBM files to PGM. */ if ( PNM_FORMAT_TYPE(format) == PBM_TYPE ) { newformat = PGM_TYPE; newmaxval = PGM_MAXMAXVAL; pm_message( "promoting from PBM to PGM" ); } else { newformat = format; newmaxval = maxval; } compute_output_dimensions(cmdline, rows, cols, &newrows, &newcols); /* We round the scale factor down so that we never fill up the output while (a fractional pixel of) input remains unused. Instead, we will run out of input while (a fractional pixel of) output is unfilled -- which is easier for our algorithm to handle. */ xscale = (float) newcols / cols; yscale = (float) newrows / rows; if (cmdline.verbose) { pm_message("Scaling by %f horizontally to %d columns.", xscale, newcols ); pm_message("Scaling by %f vertically to %d rows.", yscale, newrows); } if (xscale * cols < newcols - 1 || yscale * rows < newrows - 1) pm_error("Arithmetic precision of this program is inadequate to " "do the specified scaling. Use a smaller input image " "or a slightly different scale factor."); xelrow = pnm_allocrow(cols); if (newrows == rows) /* shortcut Y scaling if possible */ tempxelrow = xelrow; else tempxelrow = pnm_allocrow( cols ); rs = (float*) pm_allocrow( cols, sizeof(float) ); gs = (float*) pm_allocrow( cols, sizeof(float) ); bs = (float*) pm_allocrow( cols, sizeof(float) ); rowsread = 0; fracrowleft = yscale; needtoreadrow = 1; for ( col = 0; col < cols; ++col ) rs[col] = gs[col] = bs[col] = 0.0; fracrowtofill = 1.0; pnm_writepnminit( stdout, newcols, newrows, newmaxval, newformat, 0 ); newxelrow = pnm_allocrow( newcols ); for ( row = 0; row < newrows; ++row ) { /* First scale Y from xelrow into tempxelrow. */ if ( newrows == rows ) { /* shortcut Y scaling if possible */ pnm_readpnmrow( ifp, xelrow, cols, newmaxval, format ); } else { while ( fracrowleft < fracrowtofill ) { if ( needtoreadrow ) if ( rowsread < rows ) { pnm_readpnmrow( ifp, xelrow, cols, newmaxval, format ); ++rowsread; } switch ( PNM_FORMAT_TYPE(format) ) { case PPM_TYPE: for ( col = 0; col < cols; ++col ) { rs[col] += fracrowleft * PPM_GETR(xelrow[col]); gs[col] += fracrowleft * PPM_GETG(xelrow[col]); bs[col] += fracrowleft * PPM_GETB(xelrow[col]); } break; default: for ( col = 0; col < cols; ++col) gs[col] += fracrowleft * PNM_GET1(xelrow[col]); break; } fracrowtofill -= fracrowleft; fracrowleft = yscale; needtoreadrow = 1; } /* Now fracrowleft is >= fracrowtofill, so we can produce a row. */ if ( needtoreadrow ) { if ( rowsread < rows ) { pnm_readpnmrow( ifp, xelrow, cols, newmaxval, format ); ++rowsread; needtoreadrow = 0; } else { /* We need another input row to fill up this output row, but there aren't any more. That's because of rounding down on our scaling arithmetic. So we go ahead with the data from the last row we read, which amounts to stretching out the last output row. */ if (cmdline.verbose) pm_message("%f of bottom row stretched due to " "arithmetic imprecision", fracrowtofill); } } switch ( PNM_FORMAT_TYPE(format) ) { case PPM_TYPE: for ( col = 0; col < cols; ++col) { float r, g, b; r = rs[col] + fracrowtofill * PPM_GETR(xelrow[col]); g = gs[col] + fracrowtofill * PPM_GETG(xelrow[col]); b = bs[col] + fracrowtofill * PPM_GETB(xelrow[col]); PPM_ASSIGN( tempxelrow[col], min(newmaxval, (int) (r + 0.5)), min(newmaxval, (int) (g + 0.5)), min(newmaxval, (int) (b + 0.5)) ); rs[col] = gs[col] = bs[col] = 0.0; } break; default: for ( col = 0; col < cols; ++col ) { float g; g = gs[col] + fracrowtofill * PNM_GET1(xelrow[col]); PNM_ASSIGN1(tempxelrow[col], min(newmaxval, (int) (g + 0.5))); gs[col] = 0.0; } break; } fracrowleft -= fracrowtofill; if ( fracrowleft <= 0.0 ) { fracrowleft = yscale; needtoreadrow = 1; } fracrowtofill = 1.0; } /* Now scale tempxelrow horizontally into newxelrow & write it out. */ if (newcols == cols) /* shortcut X scaling if possible */ pnm_writepnmrow(stdout, tempxelrow, newcols, newmaxval, newformat, 0); else { float stretch; horizontal_scale(tempxelrow, newxelrow, cols, newcols, xscale, format, newmaxval, &stretch); if (cmdline.verbose && row == 0) pm_message("%f of right column stretched due to " "arithmetic imprecision", stretch); pnm_writepnmrow(stdout, newxelrow, newcols, newmaxval, newformat, 0 ); } } pm_close( ifp ); pm_close( stdout ); exit( 0 ); }