// -*- C++ -*- //===-- utils.h -----------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // File contains common utilities that tests rely on // Do not #include , because if we do we will not detect accidental dependencies. #include #include #include #include #include #include #include #include #include #include "pstl_test_config.h" namespace TestUtils { typedef double float64_t; typedef float float32_t; template constexpr size_t const_size(const T (&array)[N]) noexcept { return N; } template class Sequence; // Handy macros for error reporting #define EXPECT_TRUE(condition, message) ::TestUtils::expect(true, condition, __FILE__, __LINE__, message) #define EXPECT_FALSE(condition, message) ::TestUtils::expect(false, condition, __FILE__, __LINE__, message) // Check that expected and actual are equal and have the same type. #define EXPECT_EQ(expected, actual, message) ::TestUtils::expect_equal(expected, actual, __FILE__, __LINE__, message) // Check that sequences started with expected and actual and have had size n are equal and have the same type. #define EXPECT_EQ_N(expected, actual, n, message) \ ::TestUtils::expect_equal(expected, actual, n, __FILE__, __LINE__, message) // Issue error message from outstr, adding a newline. // Real purpose of this routine is to have a place to hang a breakpoint. inline void issue_error_message(std::stringstream& outstr) { outstr << std::endl; std::cerr << outstr.str(); std::exit(EXIT_FAILURE); } inline void expect(bool expected, bool condition, const char* file, int32_t line, const char* message) { if (condition != expected) { std::stringstream outstr; outstr << "error at " << file << ":" << line << " - " << message; issue_error_message(outstr); } } // Do not change signature to const T&. // Function must be able to detect const differences between expected and actual. template void expect_equal(T& expected, T& actual, const char* file, int32_t line, const char* message) { if (!(expected == actual)) { std::stringstream outstr; outstr << "error at " << file << ":" << line << " - " << message << ", expected " << expected << " got " << actual; issue_error_message(outstr); } } template void expect_equal(Sequence& expected, Sequence& actual, const char* file, int32_t line, const char* message) { size_t n = expected.size(); size_t m = actual.size(); if (n != m) { std::stringstream outstr; outstr << "error at " << file << ":" << line << " - " << message << ", expected sequence of size " << n << " got sequence of size " << m; issue_error_message(outstr); return; } size_t error_count = 0; for (size_t k = 0; k < n && error_count < 10; ++k) { if (!(expected[k] == actual[k])) { std::stringstream outstr; outstr << "error at " << file << ":" << line << " - " << message << ", at index " << k << " expected " << expected[k] << " got " << actual[k]; issue_error_message(outstr); ++error_count; } } } template void expect_equal(Iterator1 expected_first, Iterator2 actual_first, Size n, const char* file, int32_t line, const char* message) { size_t error_count = 0; for (size_t k = 0; k < n && error_count < 10; ++k, ++expected_first, ++actual_first) { if (!(*expected_first == *actual_first)) { std::stringstream outstr; outstr << "error at " << file << ":" << line << " - " << message << ", at index " << k; issue_error_message(outstr); ++error_count; } } } // ForwardIterator is like type Iterator, but restricted to be a forward iterator. // Only the forward iterator signatures that are necessary for tests are present. // Post-increment in particular is deliberatly omitted since our templates should avoid using it // because of efficiency considerations. template class ForwardIterator { public: typedef IteratorTag iterator_category; typedef typename std::iterator_traits::value_type value_type; typedef typename std::iterator_traits::difference_type difference_type; typedef typename std::iterator_traits::pointer pointer; typedef typename std::iterator_traits::reference reference; protected: Iterator my_iterator; typedef value_type element_type; public: ForwardIterator() = default; explicit ForwardIterator(Iterator i) : my_iterator(i) {} reference operator*() const { return *my_iterator; } Iterator operator->() const { return my_iterator; } ForwardIterator operator++() { ++my_iterator; return *this; } ForwardIterator operator++(int32_t) { auto retval = *this; my_iterator++; return retval; } friend bool operator==(const ForwardIterator& i, const ForwardIterator& j) { return i.my_iterator == j.my_iterator; } friend bool operator!=(const ForwardIterator& i, const ForwardIterator& j) { return i.my_iterator != j.my_iterator; } Iterator iterator() const { return my_iterator; } }; template class BidirectionalIterator : public ForwardIterator { typedef ForwardIterator base_type; public: BidirectionalIterator() = default; explicit BidirectionalIterator(Iterator i) : base_type(i) {} BidirectionalIterator(const base_type& i) : base_type(i.iterator()) {} BidirectionalIterator operator++() { ++base_type::my_iterator; return *this; } BidirectionalIterator operator--() { --base_type::my_iterator; return *this; } BidirectionalIterator operator++(int32_t) { auto retval = *this; base_type::my_iterator++; return retval; } BidirectionalIterator operator--(int32_t) { auto retval = *this; base_type::my_iterator--; return retval; } }; template void fill_data(Iterator first, Iterator last, F f) { typedef typename std::iterator_traits::value_type T; for (std::size_t i = 0; first != last; ++first, ++i) { *first = T(f(i)); } } // Sequence is a container of a sequence of T with lots of kinds of iterators. // Prefixes on begin/end mean: // c = "const" // f = "forward" // No prefix indicates non-const random-access iterator. template class Sequence { std::vector m_storage; public: typedef typename std::vector::iterator iterator; typedef typename std::vector::const_iterator const_iterator; typedef ForwardIterator forward_iterator; typedef ForwardIterator const_forward_iterator; typedef BidirectionalIterator bidirectional_iterator; typedef BidirectionalIterator const_bidirectional_iterator; typedef T value_type; explicit Sequence(size_t size) : m_storage(size) {} // Construct sequence [f(0), f(1), ... f(size-1)] // f can rely on its invocations being sequential from 0 to size-1. template Sequence(size_t size, Func f) { m_storage.reserve(size); // Use push_back because T might not have a default constructor for (size_t k = 0; k < size; ++k) m_storage.push_back(T(f(k))); } Sequence(const std::initializer_list& data) : m_storage(data) {} const_iterator begin() const { return m_storage.begin(); } const_iterator end() const { return m_storage.end(); } iterator begin() { return m_storage.begin(); } iterator end() { return m_storage.end(); } const_iterator cbegin() const { return m_storage.cbegin(); } const_iterator cend() const { return m_storage.cend(); } forward_iterator fbegin() { return forward_iterator(m_storage.begin()); } forward_iterator fend() { return forward_iterator(m_storage.end()); } const_forward_iterator cfbegin() const { return const_forward_iterator(m_storage.cbegin()); } const_forward_iterator cfend() const { return const_forward_iterator(m_storage.cend()); } const_forward_iterator fbegin() const { return const_forward_iterator(m_storage.cbegin()); } const_forward_iterator fend() const { return const_forward_iterator(m_storage.cend()); } const_bidirectional_iterator cbibegin() const { return const_bidirectional_iterator(m_storage.cbegin()); } const_bidirectional_iterator cbiend() const { return const_bidirectional_iterator(m_storage.cend()); } bidirectional_iterator bibegin() { return bidirectional_iterator(m_storage.begin()); } bidirectional_iterator biend() { return bidirectional_iterator(m_storage.end()); } std::size_t size() const { return m_storage.size(); } const T* data() const { return m_storage.data(); } typename std::vector::reference operator[](size_t j) { return m_storage[j]; } const T& operator[](size_t j) const { return m_storage[j]; } // Fill with given value void fill(const T& value) { for (size_t i = 0; i < m_storage.size(); i++) m_storage[i] = value; } void print() const; template void fill(Func f) { fill_data(m_storage.begin(), m_storage.end(), f); } }; template void Sequence::print() const { std::cout << "size = " << size() << ": { "; std::copy(begin(), end(), std::ostream_iterator(std::cout, " ")); std::cout << " } " << std::endl; } // Predicates for algorithms template struct is_equal_to { is_equal_to(const DataType& expected) : m_expected(expected) {} bool operator()(const DataType& actual) const { return actual == m_expected; } private: DataType m_expected; }; // Low-quality hash function, returns value between 0 and (1<= 8 * sizeof(size_t) ? ~size_t(0) : (size_t(1) << bits) - 1; return (424157 * i ^ 0x24aFa) & mask; } // Stateful unary op template class Complement { int32_t val; public: Complement(T v) : val(v) {} U operator()(const T& x) const { return U(val - x); } }; // Tag used to prevent accidental use of converting constructor, even if use is explicit. struct OddTag { }; class Sum; // Type with limited set of operations. Not default-constructible. // Only available operator is "==". // Typically used as value type in tests. class Number { int32_t value; friend class Add; friend class Sum; friend class IsMultiple; friend class Congruent; friend Sum operator+(const Sum& x, const Sum& y); public: Number(int32_t val, OddTag) : value(val) {} friend bool operator==(const Number& x, const Number& y) { return x.value == y.value; } friend std::ostream& operator<<(std::ostream& o, const Number& d) { return o << d.value; } }; // Stateful predicate for Number. Not default-constructible. class IsMultiple { long modulus; public: // True if x is multiple of modulus bool operator()(Number x) const { return x.value % modulus == 0; } IsMultiple(long modulus_, OddTag) : modulus(modulus_) {} }; // Stateful equivalence-class predicate for Number. Not default-constructible. class Congruent { long modulus; public: // True if x and y have same remainder for the given modulus. // Note: this is not quite the same as "equivalent modulo modulus" when x and y have different // sign, but nonetheless AreCongruent is still an equivalence relationship, which is all // we need for testing. bool operator()(Number x, Number y) const { return x.value % modulus == y.value % modulus; } Congruent(long modulus_, OddTag) : modulus(modulus_) {} }; // Stateful reduction operation for Number class Add { long bias; public: explicit Add(OddTag) : bias(1) {} Number operator()(Number x, const Number& y) { return Number(x.value + y.value + (bias - 1), OddTag()); } }; // Class similar to Number, but has default constructor and +. class Sum : public Number { public: Sum() : Number(0, OddTag()) {} Sum(long x, OddTag) : Number(x, OddTag()) {} friend Sum operator+(const Sum& x, const Sum& y) { return Sum(x.value + y.value, OddTag()); } }; // Type with limited set of operations, which includes an associative but not commutative operation. // Not default-constructible. // Typically used as value type in tests involving "GENERALIZED_NONCOMMUTATIVE_SUM". class MonoidElement { size_t a, b; public: MonoidElement(size_t a_, size_t b_, OddTag) : a(a_), b(b_) {} friend bool operator==(const MonoidElement& x, const MonoidElement& y) { return x.a == y.a && x.b == y.b; } friend std::ostream& operator<<(std::ostream& o, const MonoidElement& x) { return o << "[" << x.a << ".." << x.b << ")"; } friend class AssocOp; }; // Stateful associative op for MonoidElement // It's not really a monoid since the operation is not allowed for any two elements. // But it's good enough for testing. class AssocOp { unsigned c; public: explicit AssocOp(OddTag) : c(5) {} MonoidElement operator()(const MonoidElement& x, const MonoidElement& y) { unsigned d = 5; EXPECT_EQ(d, c, "state lost"); EXPECT_EQ(x.b, y.a, "commuted?"); return MonoidElement(x.a, y.b, OddTag()); } }; // Multiplication of matrix is an associative but not commutative operation // Typically used as value type in tests involving "GENERALIZED_NONCOMMUTATIVE_SUM". template struct Matrix2x2 { T a[2][2]; Matrix2x2() : a{{1, 0}, {0, 1}} {} Matrix2x2(T x, T y) : a{{0, x}, {x, y}} {} #if !_PSTL_ICL_19_VC14_VC141_TEST_SCAN_RELEASE_BROKEN Matrix2x2(const Matrix2x2& m) : a{{m.a[0][0], m.a[0][1]}, {m.a[1][0], m.a[1][1]}} {} Matrix2x2& operator=(const Matrix2x2& m) { a[0][0] = m.a[0][0], a[0][1] = m.a[0][1], a[1][0] = m.a[1][0], a[1][1] = m.a[1][1]; return *this; } #endif }; template bool operator==(const Matrix2x2& left, const Matrix2x2& right) { return left.a[0][0] == right.a[0][0] && left.a[0][1] == right.a[0][1] && left.a[1][0] == right.a[1][0] && left.a[1][1] == right.a[1][1]; } template Matrix2x2 multiply_matrix(const Matrix2x2& left, const Matrix2x2& right) { Matrix2x2 result; for (int32_t i = 0; i < 2; ++i) { for (int32_t j = 0; j < 2; ++j) { result.a[i][j] = left.a[i][0] * right.a[0][j] + left.a[i][1] * right.a[1][j]; } } return result; } //============================================================================ // Adapters for creating different types of iterators. // // In this block we implemented some adapters for creating differnet types of iterators. // It's needed for extending the unit testing of Parallel STL algorithms. // We have adapters for iterators with different tags (forward_iterator_tag, bidirectional_iterator_tag), reverse iterators. // The input iterator should be const or non-const, non-reverse random access iterator. // Iterator creates in "MakeIterator": // firstly, iterator is "packed" by "IteratorTypeAdapter" (creating forward or bidirectional iterator) // then iterator is "packed" by "ReverseAdapter" (if it's possible) // So, from input iterator we may create, for example, reverse bidirectional iterator. // "Main" functor for testing iterators is named "invoke_on_all_iterator_types". // Base adapter template struct BaseAdapter { typedef Iterator iterator_type; iterator_type operator()(Iterator it) { return it; } }; // Check if the iterator is reverse iterator // Note: it works only for iterators that created by std::reverse_iterator template struct isReverse : std::false_type { }; template struct isReverse> : std::true_type { }; // Reverse adapter template struct ReverseAdapter { typedef std::reverse_iterator iterator_type; iterator_type operator()(Iterator it) { #if _PSTL_CPP14_MAKE_REVERSE_ITERATOR_PRESENT return std::make_reverse_iterator(it); #else return iterator_type(it); #endif } }; // Non-reverse adapter template struct ReverseAdapter : BaseAdapter { }; // Iterator adapter by type (by default std::random_access_iterator_tag) template struct IteratorTypeAdapter : BaseAdapter { }; // Iterator adapter for forward iterator template struct IteratorTypeAdapter { typedef ForwardIterator iterator_type; iterator_type operator()(Iterator it) { return iterator_type(it); } }; // Iterator adapter for bidirectional iterator template struct IteratorTypeAdapter { typedef BidirectionalIterator iterator_type; iterator_type operator()(Iterator it) { return iterator_type(it); } }; //For creating iterator with new type template struct MakeIterator { typedef IteratorTypeAdapter IterByType; typedef ReverseAdapter ReverseIter; typename ReverseIter::iterator_type operator()(InputIterator it) { return ReverseIter()(IterByType()(it)); } }; // Useful constant variables constexpr std::size_t GuardSize = 5; constexpr std::ptrdiff_t sizeLimit = 1000; template // local iterator_traits for non-iterators struct iterator_traits_ { }; template // For iterators struct iterator_traits_::value, void>::type> { typedef typename Iter::iterator_category iterator_category; }; template // For pointers struct iterator_traits_ { typedef std::random_access_iterator_tag iterator_category; }; // is iterator Iter has tag Tag template using is_same_iterator_category = std::is_same::iterator_category, Tag>; // if we run with reverse or const iterators we shouldn't test the large range template struct invoke_if_ { template void operator()(bool is_allow, Op op, Rest&&... rest) { if (is_allow) op(std::forward(rest)...); } }; template <> struct invoke_if_ { template void operator()(bool is_allow, Op op, Rest&&... rest) { op(std::forward(rest)...); } }; // Base non_const_wrapper struct. It is used to distinguish non_const testcases // from a regular one. For non_const testcases only compilation is checked. struct non_const_wrapper { }; // Generic wrapper to specify iterator type to execute callable Op on. // The condition can be either positive(Op is executed only with IteratorTag) // or negative(Op is executed with every type of iterators except IteratorTag) template struct non_const_wrapper_tagged : non_const_wrapper { template typename std::enable_if::value, void>::type operator()(Policy&& exec, Iterator iter) { Op()(exec, iter); } template typename std::enable_if::value, void>::type operator()(Policy&& exec, InputIterator input_iter, OutputIterator out_iter) { Op()(exec, input_iter, out_iter); } template typename std::enable_if::value, void>::type operator()(Policy&& exec, Iterator iter) { } template typename std::enable_if::value, void>::type operator()(Policy&& exec, InputIterator input_iter, OutputIterator out_iter) { } }; // These run_for_* structures specify with which types of iterators callable object Op // should be executed. template struct run_for_rnd : non_const_wrapper_tagged { }; template struct run_for_rnd_bi : non_const_wrapper_tagged { }; template struct run_for_rnd_fw : non_const_wrapper_tagged { }; // Invoker for different types of iterators. template struct iterator_invoker { template using make_iterator = MakeIterator; template using IsConst = typename std::is_const< typename std::remove_pointer::pointer>::type>::type; template using invoke_if = invoke_if_>; // A single iterator version which is used for non_const testcases template typename std::enable_if::value && std::is_base_of::value, void>::type operator()(Policy&& exec, Op op, Iterator iter) { op(std::forward(exec), make_iterator()(iter)); } // A version with 2 iterators which is used for non_const testcases template typename std::enable_if::value && std::is_base_of::value, void>::type operator()(Policy&& exec, Op op, InputIterator input_iter, OutputIterator out_iter) { op(std::forward(exec), make_iterator()(input_iter), make_iterator()(out_iter)); } template typename std::enable_if::value, void>::type operator()(Policy&& exec, Op op, Iterator begin, Size n, Rest&&... rest) { invoke_if()(n <= sizeLimit, op, exec, make_iterator()(begin), n, std::forward(rest)...); } template typename std::enable_if::value && !std::is_base_of::value, void>::type operator()(Policy&& exec, Op op, Iterator inputBegin, Iterator inputEnd, Rest&&... rest) { invoke_if()(std::distance(inputBegin, inputEnd) <= sizeLimit, op, exec, make_iterator()(inputBegin), make_iterator()(inputEnd), std::forward(rest)...); } template typename std::enable_if::value, void>::type operator()(Policy&& exec, Op op, InputIterator inputBegin, InputIterator inputEnd, OutputIterator outputBegin, Rest&&... rest) { invoke_if()(std::distance(inputBegin, inputEnd) <= sizeLimit, op, exec, make_iterator()(inputBegin), make_iterator()(inputEnd), make_iterator()(outputBegin), std::forward(rest)...); } template typename std::enable_if::value, void>::type operator()(Policy&& exec, Op op, InputIterator inputBegin, InputIterator inputEnd, OutputIterator outputBegin, OutputIterator outputEnd, Rest&&... rest) { invoke_if()(std::distance(inputBegin, inputEnd) <= sizeLimit, op, exec, make_iterator()(inputBegin), make_iterator()(inputEnd), make_iterator()(outputBegin), make_iterator()(outputEnd), std::forward(rest)...); } template typename std::enable_if::value, void>::type operator()(Policy&& exec, Op op, InputIterator1 inputBegin1, InputIterator1 inputEnd1, InputIterator2 inputBegin2, InputIterator2 inputEnd2, OutputIterator outputBegin, OutputIterator outputEnd, Rest&&... rest) { invoke_if()( std::distance(inputBegin1, inputEnd1) <= sizeLimit, op, exec, make_iterator()(inputBegin1), make_iterator()(inputEnd1), make_iterator()(inputBegin2), make_iterator()(inputEnd2), make_iterator()(outputBegin), make_iterator()(outputEnd), std::forward(rest)...); } }; // Invoker for reverse iterators only // Note: if we run with reverse iterators we shouldn't test the large range template struct iterator_invoker { template using make_iterator = MakeIterator; // A single iterator version which is used for non_const testcases template typename std::enable_if::value && std::is_base_of::value, void>::type operator()(Policy&& exec, Op op, Iterator iter) { op(std::forward(exec), make_iterator()(iter)); } // A version with 2 iterators which is used for non_const testcases template typename std::enable_if::value && std::is_base_of::value, void>::type operator()(Policy&& exec, Op op, InputIterator input_iter, OutputIterator out_iter) { op(std::forward(exec), make_iterator()(input_iter), make_iterator()(out_iter)); } template typename std::enable_if::value, void>::type operator()(Policy&& exec, Op op, Iterator begin, Size n, Rest&&... rest) { if (n <= sizeLimit) op(exec, make_iterator()(begin + n), n, std::forward(rest)...); } template typename std::enable_if::value && !std::is_base_of::value, void>::type operator()(Policy&& exec, Op op, Iterator inputBegin, Iterator inputEnd, Rest&&... rest) { if (std::distance(inputBegin, inputEnd) <= sizeLimit) op(exec, make_iterator()(inputEnd), make_iterator()(inputBegin), std::forward(rest)...); } template typename std::enable_if::value, void>::type operator()(Policy&& exec, Op op, InputIterator inputBegin, InputIterator inputEnd, OutputIterator outputBegin, Rest&&... rest) { if (std::distance(inputBegin, inputEnd) <= sizeLimit) op(exec, make_iterator()(inputEnd), make_iterator()(inputBegin), make_iterator()(outputBegin + (inputEnd - inputBegin)), std::forward(rest)...); } template typename std::enable_if::value, void>::type operator()(Policy&& exec, Op op, InputIterator inputBegin, InputIterator inputEnd, OutputIterator outputBegin, OutputIterator outputEnd, Rest&&... rest) { if (std::distance(inputBegin, inputEnd) <= sizeLimit) op(exec, make_iterator()(inputEnd), make_iterator()(inputBegin), make_iterator()(outputEnd), make_iterator()(outputBegin), std::forward(rest)...); } template typename std::enable_if::value, void>::type operator()(Policy&& exec, Op op, InputIterator1 inputBegin1, InputIterator1 inputEnd1, InputIterator2 inputBegin2, InputIterator2 inputEnd2, OutputIterator outputBegin, OutputIterator outputEnd, Rest&&... rest) { if (std::distance(inputBegin1, inputEnd1) <= sizeLimit) op(exec, make_iterator()(inputEnd1), make_iterator()(inputBegin1), make_iterator()(inputEnd2), make_iterator()(inputBegin2), make_iterator()(outputEnd), make_iterator()(outputBegin), std::forward(rest)...); } }; // We can't create reverse iterator from forward iterator template <> struct iterator_invoker { template void operator()(Rest&&... rest) { } }; template struct reverse_invoker { template void operator()(Rest&&... rest) { // Random-access iterator iterator_invoker()(std::forward(rest)...); // Forward iterator iterator_invoker()(std::forward(rest)...); // Bidirectional iterator iterator_invoker()(std::forward(rest)...); } }; struct invoke_on_all_iterator_types { template void operator()(Rest&&... rest) { reverse_invoker()(std::forward(rest)...); reverse_invoker()(std::forward(rest)...); } }; //============================================================================ // Invoke op(policy,rest...) for each possible policy. template void invoke_on_all_policies(Op op, T&&... rest) { using namespace __pstl::execution; // Try static execution policies invoke_on_all_iterator_types()(seq, op, std::forward(rest)...); invoke_on_all_iterator_types()(unseq, op, std::forward(rest)...); invoke_on_all_iterator_types()(par, op, std::forward(rest)...); invoke_on_all_iterator_types()(par_unseq, op, std::forward(rest)...); } template struct NonConstAdapter { F my_f; NonConstAdapter(const F& f) : my_f(f) {} template auto operator()(Types&&... args) -> decltype(std::declval(). operator()(std::forward(args)...)) { return my_f(std::forward(args)...); } }; template NonConstAdapter non_const(const F& f) { return NonConstAdapter(f); } // Wrapper for types. It's need for counting of constructing and destructing objects template class Wrapper { public: Wrapper() { my_field = std::shared_ptr(new T()); ++my_count; } Wrapper(const T& input) { my_field = std::shared_ptr(new T(input)); ++my_count; } Wrapper(const Wrapper& input) { my_field = input.my_field; ++my_count; } Wrapper(Wrapper&& input) { my_field = input.my_field; input.my_field = nullptr; ++move_count; } Wrapper& operator=(const Wrapper& input) { my_field = input.my_field; return *this; } Wrapper& operator=(Wrapper&& input) { my_field = input.my_field; input.my_field = nullptr; ++move_count; return *this; } bool operator==(const Wrapper& input) const { return my_field == input.my_field; } bool operator<(const Wrapper& input) const { return *my_field < *input.my_field; } bool operator>(const Wrapper& input) const { return *my_field > *input.my_field; } friend std::ostream& operator<<(std::ostream& stream, const Wrapper& input) { return stream << *(input.my_field); } ~Wrapper() { --my_count; if (move_count > 0) { --move_count; } } T* get_my_field() const { return my_field.get(); }; static size_t Count() { return my_count; } static size_t MoveCount() { return move_count; } static void SetCount(const size_t& n) { my_count = n; } static void SetMoveCount(const size_t& n) { move_count = n; } private: static std::atomic my_count; static std::atomic move_count; std::shared_ptr my_field; }; template std::atomic Wrapper::my_count = {0}; template std::atomic Wrapper::move_count = {0}; template T transform_reduce_serial(InputIterator first, InputIterator last, T init, BinaryOperation binary_op, UnaryOperation unary_op) noexcept { for (; first != last; ++first) { init = binary_op(init, unary_op(*first)); } return init; } static const char* done() { #if _PSTL_TEST_SUCCESSFUL_KEYWORD return "done"; #else return "passed"; #endif } // test_algo_basic_* functions are used to execute // f on a very basic sequence of elements of type T. // Should be used with unary predicate template static void test_algo_basic_single(F&& f) { size_t N = 10; Sequence in(N, [](size_t v) -> T { return T(v); }); invoke_on_all_policies(f, in.begin()); } // Should be used with binary predicate template static void test_algo_basic_double(F&& f) { size_t N = 10; Sequence in(N, [](size_t v) -> T { return T(v); }); Sequence out(N, [](size_t v) -> T { return T(v); }); invoke_on_all_policies(f, in.begin(), out.begin()); } template static void invoke_if(Policy&& p, F f) { #if _PSTL_ICC_16_VC14_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN || _PSTL_ICC_17_VC141_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN __pstl::__internal::invoke_if_not(__pstl::__internal::allow_unsequenced(), f); #else f(); #endif } } /* namespace TestUtils */