;; Expander definitions for vector support between altivec & vsx. No ;; instructions are in this file, this file provides the generic vector ;; expander, and the actual vector instructions will be in altivec.md and ;; vsx.md ;; Copyright (C) 2009-2024 Free Software Foundation, Inc. ;; Contributed by Michael Meissner ;; This file is part of GCC. ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published ;; by the Free Software Foundation; either version 3, or (at your ;; option) any later version. ;; GCC is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ;; License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; . ;; Vector int modes (define_mode_iterator VEC_I [V16QI V8HI V4SI V2DI]) ;; Vector int modes for comparison, shift and rotation (define_mode_iterator VEC_IC [V16QI V8HI V4SI V2DI (V1TI "TARGET_POWER10")]) ;; 128-bit int modes (define_mode_iterator VEC_TI [V1TI TI]) ;; Vector int modes for parity (define_mode_iterator VEC_IP [V8HI V4SI V2DI V1TI TI]) ;; Vector float modes (define_mode_iterator VEC_F [V4SF V2DF]) ;; Vector arithmetic modes (define_mode_iterator VEC_A [V16QI V8HI V4SI V2DI V4SF V2DF]) ;; Vector modes that need alginment via permutes (define_mode_iterator VEC_K [V16QI V8HI V4SI V4SF]) ;; Vector logical modes (define_mode_iterator VEC_L [V16QI V8HI V4SI V2DI V4SF V2DF V1TI TI KF TF]) ;; Vector modes for moves. Don't do TImode or TFmode here, since their ;; moves are handled elsewhere. (define_mode_iterator VEC_M [V16QI V8HI V4SI V2DI V4SF V2DF V1TI KF]) ;; Vector modes for types that don't need a realignment under VSX (define_mode_iterator VEC_N [V4SI V4SF V2DI V2DF V1TI KF TF]) ;; Vector comparison modes (define_mode_iterator VEC_C [V16QI V8HI V4SI V2DI V4SF V2DF V1TI]) ;; Vector init/extract modes (define_mode_iterator VEC_E [V16QI V8HI V4SI V2DI V4SF V2DF]) ;; Vector modes for 64-bit base types (define_mode_iterator VEC_64 [V2DI V2DF]) ;; Vector integer modes (define_mode_iterator VI [V4SI V8HI V16QI]) ;; Base type from vector mode (define_mode_attr VEC_base [(V16QI "QI") (V8HI "HI") (V4SI "SI") (V2DI "DI") (V4SF "SF") (V2DF "DF") (V1TI "TI") (TI "TI")]) ;; As above, but in lower case (define_mode_attr VEC_base_l [(V16QI "qi") (V8HI "hi") (V4SI "si") (V2DI "di") (V4SF "sf") (V2DF "df") (V1TI "ti") (TI "ti")]) ;; Same size integer type for floating point data (define_mode_attr VEC_int [(V4SF "v4si") (V2DF "v2di")]) (define_mode_attr VEC_INT [(V4SF "V4SI") (V2DF "V2DI")]) ;; constants for unspec (define_c_enum "unspec" [UNSPEC_PREDICATE UNSPEC_REDUC UNSPEC_NEZ_P]) ;; Vector reduction code iterators (define_code_iterator VEC_reduc [plus smin smax]) (define_code_attr VEC_reduc_name [(plus "plus") (smin "smin") (smax "smax")]) (define_code_attr VEC_reduc_rtx [(plus "add") (smin "smin") (smax "smax")]) ;; code iterators and attributes for vector FP comparison operators: (define_code_iterator vector_fp_comparison_simple [lt le ne ungt unge unlt unle]) (define_code_iterator vector_fp_comparison_complex [ltgt uneq unordered ordered]) ;; Vector move instructions. Little-endian VSX loads and stores require ;; special handling to circumvent "element endianness." (define_expand "mov" [(set (match_operand:VEC_M 0 "nonimmediate_operand") (match_operand:VEC_M 1 "any_operand"))] "VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)" { if (can_create_pseudo_p ()) { if (CONSTANT_P (operands[1])) { if (FLOAT128_VECTOR_P (mode)) { if (!easy_fp_constant (operands[1], mode)) operands[1] = force_const_mem (mode, operands[1]); } else if (!easy_vector_constant (operands[1], mode)) operands[1] = force_const_mem (mode, operands[1]); } if (!vlogical_operand (operands[0], mode) && !vlogical_operand (operands[1], mode)) operands[1] = force_reg (mode, operands[1]); } /* When generating load/store instructions to/from VSX registers on pre-power9 hardware in little endian mode, we need to emit register permute instructions to byte swap the contents, since the VSX load/store instructions do not include a byte swap as part of their operation. Altivec loads and stores have no such problem, so we skip them below. */ if (!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (mode) && !TARGET_P9_VECTOR && !gpr_or_gpr_p (operands[0], operands[1]) && ((memory_operand (operands[0], mode) && !altivec_indexed_or_indirect_operand(operands[0], mode)) ^ (memory_operand (operands[1], mode) && !altivec_indexed_or_indirect_operand(operands[1], mode)))) { rs6000_emit_le_vsx_move (operands[0], operands[1], mode); DONE; } }) ;; Generic vector floating point load/store instructions. These will match ;; insns defined in vsx.md or altivec.md depending on the switches. (define_expand "vector_load_" [(set (match_operand:VEC_M 0 "vfloat_operand") (match_operand:VEC_M 1 "memory_operand"))] "VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "vector_store_" [(set (match_operand:VEC_M 0 "memory_operand") (match_operand:VEC_M 1 "vfloat_operand"))] "VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)" "") ;; Splits if a GPR register was chosen for the move (define_split [(set (match_operand:VEC_L 0 "nonimmediate_operand") (match_operand:VEC_L 1 "input_operand"))] "VECTOR_MEM_ALTIVEC_OR_VSX_P (mode) && reload_completed && gpr_or_gpr_p (operands[0], operands[1]) && !direct_move_p (operands[0], operands[1]) && !quad_load_store_p (operands[0], operands[1])" [(pc)] { rs6000_split_multireg_move (operands[0], operands[1]); DONE; }) ;; Generic floating point vector arithmetic support (define_expand "add3" [(set (match_operand:VEC_F 0 "vfloat_operand") (plus:VEC_F (match_operand:VEC_F 1 "vfloat_operand") (match_operand:VEC_F 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "sub3" [(set (match_operand:VEC_F 0 "vfloat_operand") (minus:VEC_F (match_operand:VEC_F 1 "vfloat_operand") (match_operand:VEC_F 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "mul3" [(set (match_operand:VEC_F 0 "vfloat_operand") (mult:VEC_F (match_operand:VEC_F 1 "vfloat_operand") (match_operand:VEC_F 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_mulv4sf3 (operands[0], operands[1], operands[2])); DONE; } }) (define_expand "div3" [(set (match_operand:VEC_F 0 "vfloat_operand") (div:VEC_F (match_operand:VEC_F 1 "vfloat_operand") (match_operand:VEC_F 2 "vfloat_operand")))] "VECTOR_UNIT_VSX_P (mode)" { if (RS6000_RECIP_AUTO_RE_P (mode) && can_create_pseudo_p () && flag_finite_math_only && !flag_trapping_math && flag_reciprocal_math) { rs6000_emit_swdiv (operands[0], operands[1], operands[2], true); DONE; } }) (define_expand "neg2" [(set (match_operand:VEC_F 0 "vfloat_operand") (neg:VEC_F (match_operand:VEC_F 1 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_negv4sf2 (operands[0], operands[1])); DONE; } }) (define_expand "abs2" [(set (match_operand:VEC_F 0 "vfloat_operand") (abs:VEC_F (match_operand:VEC_F 1 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_absv4sf2 (operands[0], operands[1])); DONE; } }) (define_expand "smin3" [(set (match_operand:VEC_F 0 "register_operand") (smin:VEC_F (match_operand:VEC_F 1 "register_operand") (match_operand:VEC_F 2 "register_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "smax3" [(set (match_operand:VEC_F 0 "register_operand") (smax:VEC_F (match_operand:VEC_F 1 "register_operand") (match_operand:VEC_F 2 "register_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "sqrt2" [(set (match_operand:VEC_F 0 "vfloat_operand") (sqrt:VEC_F (match_operand:VEC_F 1 "vfloat_operand")))] "VECTOR_UNIT_VSX_P (mode)" { if (mode == V4SFmode && !optimize_function_for_size_p (cfun) && flag_finite_math_only && !flag_trapping_math && flag_unsafe_math_optimizations) { rs6000_emit_swsqrt (operands[0], operands[1], 0); DONE; } }) (define_expand "rsqrte2" [(set (match_operand:VEC_F 0 "vfloat_operand") (unspec:VEC_F [(match_operand:VEC_F 1 "vfloat_operand")] UNSPEC_RSQRT))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "re2" [(set (match_operand:VEC_F 0 "vfloat_operand") (unspec:VEC_F [(match_operand:VEC_F 1 "vfloat_operand")] UNSPEC_FRES))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "ftrunc2" [(set (match_operand:VEC_F 0 "vfloat_operand") (fix:VEC_F (match_operand:VEC_F 1 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "vector_ceil2" [(set (match_operand:VEC_F 0 "vfloat_operand") (unspec:VEC_F [(match_operand:VEC_F 1 "vfloat_operand")] UNSPEC_FRIP))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "vector_floor2" [(set (match_operand:VEC_F 0 "vfloat_operand") (unspec:VEC_F [(match_operand:VEC_F 1 "vfloat_operand")] UNSPEC_FRIM))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "vector_btrunc2" [(set (match_operand:VEC_F 0 "vfloat_operand") (fix:VEC_F (match_operand:VEC_F 1 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "vector_copysign3" [(set (match_operand:VEC_F 0 "vfloat_operand") (copysign:VEC_F (match_operand:VEC_F 1 "vfloat_operand") (match_operand:VEC_F 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_copysign_v4sf3 (operands[0], operands[1], operands[2])); DONE; } }) ;; Vector comparisons (define_expand "vcond" [(set (match_operand:VEC_F 0 "vfloat_operand") (if_then_else:VEC_F (match_operator 3 "comparison_operator" [(match_operand:VEC_F 4 "vfloat_operand") (match_operand:VEC_F 5 "vfloat_operand")]) (match_operand:VEC_F 1 "vfloat_operand") (match_operand:VEC_F 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else gcc_unreachable (); }) (define_expand "vcond" [(set (match_operand:VEC_I 0 "vint_operand") (if_then_else:VEC_I (match_operator 3 "comparison_operator" [(match_operand:VEC_I 4 "vint_operand") (match_operand:VEC_I 5 "vint_operand")]) (match_operand:VEC_I 1 "vector_int_reg_or_same_bit") (match_operand:VEC_I 2 "vector_int_reg_or_same_bit")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else gcc_unreachable (); }) (define_expand "vcondv4sfv4si" [(set (match_operand:V4SF 0 "vfloat_operand") (if_then_else:V4SF (match_operator 3 "comparison_operator" [(match_operand:V4SI 4 "vint_operand") (match_operand:V4SI 5 "vint_operand")]) (match_operand:V4SF 1 "vfloat_operand") (match_operand:V4SF 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode) && VECTOR_UNIT_ALTIVEC_P (V4SImode)" { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else gcc_unreachable (); }) (define_expand "vcondv4siv4sf" [(set (match_operand:V4SI 0 "vint_operand") (if_then_else:V4SI (match_operator 3 "comparison_operator" [(match_operand:V4SF 4 "vfloat_operand") (match_operand:V4SF 5 "vfloat_operand")]) (match_operand:V4SI 1 "vint_operand") (match_operand:V4SI 2 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode) && VECTOR_UNIT_ALTIVEC_P (V4SImode)" { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else gcc_unreachable (); }) (define_expand "vcondv2dfv2di" [(set (match_operand:V2DF 0 "vfloat_operand") (if_then_else:V2DF (match_operator 3 "comparison_operator" [(match_operand:V2DI 4 "vint_operand") (match_operand:V2DI 5 "vint_operand")]) (match_operand:V2DF 1 "vfloat_operand") (match_operand:V2DF 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DImode)" { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else gcc_unreachable (); }) (define_expand "vcondv2div2df" [(set (match_operand:V2DI 0 "vint_operand") (if_then_else:V2DI (match_operator 3 "comparison_operator" [(match_operand:V2DF 4 "vfloat_operand") (match_operand:V2DF 5 "vfloat_operand")]) (match_operand:V2DI 1 "vint_operand") (match_operand:V2DI 2 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DImode)" { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else gcc_unreachable (); }) (define_expand "vcondu" [(set (match_operand:VEC_I 0 "vint_operand") (if_then_else:VEC_I (match_operator 3 "comparison_operator" [(match_operand:VEC_I 4 "vint_operand") (match_operand:VEC_I 5 "vint_operand")]) (match_operand:VEC_I 1 "vector_int_reg_or_same_bit") (match_operand:VEC_I 2 "vector_int_reg_or_same_bit")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else gcc_unreachable (); }) (define_expand "vconduv4sfv4si" [(set (match_operand:V4SF 0 "vfloat_operand") (if_then_else:V4SF (match_operator 3 "comparison_operator" [(match_operand:V4SI 4 "vint_operand") (match_operand:V4SI 5 "vint_operand")]) (match_operand:V4SF 1 "vfloat_operand") (match_operand:V4SF 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode) && VECTOR_UNIT_ALTIVEC_P (V4SImode)" { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else gcc_unreachable (); }) (define_expand "vconduv2dfv2di" [(set (match_operand:V2DF 0 "vfloat_operand") (if_then_else:V2DF (match_operator 3 "comparison_operator" [(match_operand:V2DI 4 "vint_operand") (match_operand:V2DI 5 "vint_operand")]) (match_operand:V2DF 1 "vfloat_operand") (match_operand:V2DF 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DImode)" { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else gcc_unreachable (); }) ;; To support vector condition vectorization, define vcond_mask and vec_cmp. ;; Same mode for condition true/false values and predicate operand. (define_expand "vcond_mask_" [(match_operand:VEC_I 0 "vint_operand") (match_operand:VEC_I 1 "vint_operand") (match_operand:VEC_I 2 "vint_operand") (match_operand:VEC_I 3 "vint_operand")] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { emit_insn (gen_vector_select_ (operands[0], operands[2], operands[1], operands[3])); DONE; }) ;; Condition true/false values are float but predicate operand is of ;; type integer vector with same element size. (define_expand "vcond_mask_" [(match_operand:VEC_F 0 "vfloat_operand") (match_operand:VEC_F 1 "vfloat_operand") (match_operand:VEC_F 2 "vfloat_operand") (match_operand: 3 "vint_operand")] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { emit_insn (gen_vector_select_ (operands[0], operands[2], operands[1], gen_lowpart (mode, operands[3]))); DONE; }) ;; For signed integer vectors comparison. (define_expand "vec_cmp" [(set (match_operand:VEC_IC 0 "vint_operand") (match_operator 1 "signed_or_equality_comparison_operator" [(match_operand:VEC_IC 2 "vint_operand") (match_operand:VEC_IC 3 "vint_operand")]))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { enum rtx_code code = GET_CODE (operands[1]); rtx tmp = gen_reg_rtx (mode); switch (code) { case NE: emit_insn (gen_vector_eq (operands[0], operands[2], operands[3])); emit_insn (gen_one_cmpl2 (operands[0], operands[0])); break; case EQ: emit_insn (gen_vector_eq (operands[0], operands[2], operands[3])); break; case GE: emit_insn (gen_vector_nlt (operands[0],operands[2], operands[3], tmp)); break; case GT: emit_insn (gen_vector_gt (operands[0], operands[2], operands[3])); break; case LE: emit_insn (gen_vector_ngt (operands[0], operands[2], operands[3], tmp)); break; case LT: emit_insn (gen_vector_gt (operands[0], operands[3], operands[2])); break; default: gcc_unreachable (); break; } DONE; }) ;; For unsigned integer vectors comparison. (define_expand "vec_cmpu" [(set (match_operand:VEC_IC 0 "vint_operand") (match_operator 1 "unsigned_or_equality_comparison_operator" [(match_operand:VEC_IC 2 "vint_operand") (match_operand:VEC_IC 3 "vint_operand")]))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { enum rtx_code code = GET_CODE (operands[1]); rtx tmp = gen_reg_rtx (mode); switch (code) { case NE: emit_insn (gen_vector_eq (operands[0], operands[2], operands[3])); emit_insn (gen_one_cmpl2 (operands[0], operands[0])); break; case EQ: emit_insn (gen_vector_eq (operands[0], operands[2], operands[3])); break; case GEU: emit_insn (gen_vector_nltu (operands[0], operands[2], operands[3], tmp)); break; case GTU: emit_insn (gen_vector_gtu (operands[0], operands[2], operands[3])); break; case LEU: emit_insn (gen_vector_ngtu (operands[0], operands[2], operands[3], tmp)); break; case LTU: emit_insn (gen_vector_gtu (operands[0], operands[3], operands[2])); break; default: gcc_unreachable (); break; } DONE; }) ;; For float point vectors comparison. (define_expand "vec_cmp" [(set (match_operand: 0 "vint_operand") (match_operator 1 "comparison_operator" [(match_operand:VEC_F 2 "vfloat_operand") (match_operand:VEC_F 3 "vfloat_operand")]))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { enum rtx_code code = GET_CODE (operands[1]); rtx res = gen_reg_rtx (mode); switch (code) { case NE: emit_insn (gen_vector_ne (res, operands[2], operands[3])); break; case EQ: emit_insn (gen_vector_eq (res, operands[2], operands[3])); break; case GE: emit_insn (gen_vector_ge (res, operands[2], operands[3])); break; case GT: emit_insn (gen_vector_gt (res, operands[2], operands[3])); break; case LE: emit_insn (gen_vector_le (res, operands[2], operands[3])); break; case LT: emit_insn (gen_vector_lt (res, operands[2], operands[3])); break; case LTGT: emit_insn (gen_vector_ltgt (res, operands[2], operands[3])); break; case UNORDERED: emit_insn (gen_vector_unordered (res, operands[2], operands[3])); break; case ORDERED: emit_insn (gen_vector_ordered (res, operands[2], operands[3])); break; case UNEQ: emit_insn (gen_vector_uneq (res, operands[2], operands[3])); break; case UNGE: emit_insn (gen_vector_unge (res, operands[2], operands[3])); break; case UNGT: emit_insn (gen_vector_ungt (res, operands[2], operands[3])); break; case UNLE: emit_insn (gen_vector_unle (res, operands[2], operands[3])); break; case UNLT: emit_insn (gen_vector_unlt (res, operands[2], operands[3])); break; default: gcc_unreachable (); } emit_insn (gen_move_insn (operands[0], gen_lowpart (mode, res))); DONE; }) (define_expand "vector_eq" [(set (match_operand:VEC_C 0 "vlogical_operand") (eq:VEC_C (match_operand:VEC_C 1 "vlogical_operand") (match_operand:VEC_C 2 "vlogical_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "vector_gt" [(set (match_operand:VEC_C 0 "vlogical_operand") (gt:VEC_C (match_operand:VEC_C 1 "vlogical_operand") (match_operand:VEC_C 2 "vlogical_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") ; >= for integer vectors: swap operands and apply not-greater-than (define_expand "vector_nlt" [(set (match_operand:VEC_IC 3 "vlogical_operand") (gt:VEC_IC (match_operand:VEC_IC 2 "vlogical_operand") (match_operand:VEC_IC 1 "vlogical_operand"))) (set (match_operand:VEC_IC 0 "vlogical_operand") (not:VEC_IC (match_dup 3)))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { operands[3] = gen_reg_rtx_and_attrs (operands[0]); }) (define_expand "vector_gtu" [(set (match_operand:VEC_IC 0 "vint_operand") (gtu:VEC_IC (match_operand:VEC_IC 1 "vint_operand") (match_operand:VEC_IC 2 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") ; >= for integer vectors: swap operands and apply not-greater-than (define_expand "vector_nltu" [(set (match_operand:VEC_IC 3 "vlogical_operand") (gtu:VEC_IC (match_operand:VEC_IC 2 "vlogical_operand") (match_operand:VEC_IC 1 "vlogical_operand"))) (set (match_operand:VEC_IC 0 "vlogical_operand") (not:VEC_IC (match_dup 3)))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { operands[3] = gen_reg_rtx_and_attrs (operands[0]); }) (define_expand "vector_geu" [(set (match_operand:VEC_IC 0 "vint_operand") (geu:VEC_IC (match_operand:VEC_IC 1 "vint_operand") (match_operand:VEC_IC 2 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") ; <= for integer vectors: apply not-greater-than (define_expand "vector_ngt" [(set (match_operand:VEC_IC 3 "vlogical_operand") (gt:VEC_IC (match_operand:VEC_IC 1 "vlogical_operand") (match_operand:VEC_IC 2 "vlogical_operand"))) (set (match_operand:VEC_IC 0 "vlogical_operand") (not:VEC_IC (match_dup 3)))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { operands[3] = gen_reg_rtx_and_attrs (operands[0]); }) (define_expand "vector_ngtu" [(set (match_operand:VEC_IC 3 "vlogical_operand") (gtu:VEC_IC (match_operand:VEC_IC 1 "vlogical_operand") (match_operand:VEC_IC 2 "vlogical_operand"))) (set (match_operand:VEC_IC 0 "vlogical_operand") (not:VEC_IC (match_dup 3)))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { operands[3] = gen_reg_rtx_and_attrs (operands[0]); }) ; There are 14 possible vector FP comparison operators, gt and eq of them have ; been expanded above, so just support 12 remaining operators here. ; For ge: (define_expand "vector_ge" [(set (match_operand:VEC_F 0 "vlogical_operand") (ge:VEC_F (match_operand:VEC_F 1 "vlogical_operand") (match_operand:VEC_F 2 "vlogical_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") ; For lt/le/ne/ungt/unge/unlt/unle: ; lt(a,b) = gt(b,a) ; le(a,b) = ge(b,a) ; unge(a,b) = ~lt(a,b) ; unle(a,b) = ~gt(a,b) ; ne(a,b) = ~eq(a,b) ; ungt(a,b) = ~le(a,b) ; unlt(a,b) = ~ge(a,b) (define_insn_and_split "vector_" [(set (match_operand:VEC_F 0 "vfloat_operand") (vector_fp_comparison_simple:VEC_F (match_operand:VEC_F 1 "vfloat_operand") (match_operand:VEC_F 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode) && can_create_pseudo_p ()" "#" "&& can_create_pseudo_p ()" [(pc)] { enum rtx_code cond = ; bool need_invert = false; if (cond == UNLE || cond == UNLT || cond == NE || cond == UNGE || cond == UNGT) { cond = reverse_condition_maybe_unordered (cond); need_invert = true; } if (cond == LT || cond == LE) { cond = swap_condition (cond); std::swap (operands[1], operands[2]); } gcc_assert (cond == EQ || cond == GE || cond == GT); rtx comp = gen_rtx_fmt_ee (cond, mode, operands[1], operands[2]); if (need_invert) { rtx res = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (res, comp)); emit_insn (gen_one_cmpl2 (operands[0], res)); } else emit_insn (gen_rtx_SET (operands[0], comp)); DONE; }) ; For ltgt/uneq/ordered/unordered: ; ltgt: gt(a,b) | gt(b,a) ; uneq: ~(gt(a,b) | gt(b,a)) ; ordered: ge(a,b) | ge(b,a) ; unordered: ~(ge(a,b) | ge(b,a)) (define_insn_and_split "vector_" [(set (match_operand:VEC_F 0 "vfloat_operand") (vector_fp_comparison_complex:VEC_F (match_operand:VEC_F 1 "vfloat_operand") (match_operand:VEC_F 2 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode) && can_create_pseudo_p ()" "#" "&& can_create_pseudo_p ()" [(pc)] { enum rtx_code cond = ; bool need_invert = false; if (cond == UNORDERED || cond == UNEQ) { cond = reverse_condition_maybe_unordered (cond); need_invert = true; } if (cond == LTGT) cond = GT; else if (cond == ORDERED) cond = GE; else gcc_unreachable (); rtx comp1 = gen_rtx_fmt_ee (cond, mode, operands[1], operands[2]); rtx res1 = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (res1, comp1)); rtx comp2 = gen_rtx_fmt_ee (cond, mode, operands[2], operands[1]); rtx res2 = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (res2, comp2)); if (need_invert) { rtx not1 = gen_rtx_fmt_e (NOT, mode, res1); rtx not2 = gen_rtx_fmt_e (NOT, mode, res2); rtx comp3 = gen_rtx_fmt_ee (AND, mode, not1, not2); emit_insn (gen_rtx_SET (operands[0], comp3)); } else emit_insn (gen_ior3 (operands[0], res1, res2)); DONE; }) ;; Note the arguments for __builtin_altivec_vsel are op2, op1, mask ;; which is in the reverse order that we want (define_expand "vector_select_" [(set (match_operand:VEC_L 0 "vlogical_operand") (ior:VEC_L (and:VEC_L (not:VEC_L (match_operand:VEC_L 3 "vlogical_operand")) (match_operand:VEC_L 1 "vlogical_operand")) (and:VEC_L (match_dup 3) (match_operand:VEC_L 2 "vlogical_operand"))))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)") (define_expand "vector_select__uns" [(set (match_operand:VEC_L 0 "vlogical_operand") (ior:VEC_L (and:VEC_L (not:VEC_L (match_operand:VEC_L 3 "vlogical_operand")) (match_operand:VEC_L 1 "vlogical_operand")) (and:VEC_L (match_dup 3) (match_operand:VEC_L 2 "vlogical_operand"))))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)") ;; Expansions that compare vectors producing a vector result and a predicate, ;; setting CR6 to indicate a combined status (define_expand "vector_eq__p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:VEC_A 1 "vlogical_operand") (match_operand:VEC_A 2 "vlogical_operand"))] UNSPEC_PREDICATE)) (set (match_operand:VEC_A 0 "vlogical_operand") (eq:VEC_A (match_dup 1) (match_dup 2)))])] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "vector_eq_v1ti_p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:V1TI 1 "altivec_register_operand") (match_operand:V1TI 2 "altivec_register_operand"))] UNSPEC_PREDICATE)) (set (match_operand:V1TI 0 "vlogical_operand") (eq:V1TI (match_dup 1) (match_dup 2)))])] "TARGET_POWER10" "") ;; This expansion handles the V16QI, V8HI, and V4SI modes in the ;; implementation of the vec_all_ne built-in functions on Power9. (define_expand "vector_ne__p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(ne:CC (match_operand:VI 1 "vlogical_operand") (match_operand:VI 2 "vlogical_operand"))] UNSPEC_PREDICATE)) (set (match_dup 3) (ne:VI (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 "register_operand" "=r") (lt:SI (reg:CC CR6_REGNO) (const_int 0)))] "TARGET_P9_VECTOR" { operands[3] = gen_reg_rtx (mode); }) ;; This expansion handles the V16QI, V8HI, and V4SI modes in the ;; implementation of the vec_any_eq built-in functions on Power9. (define_expand "vector_ae__p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(ne:CC (match_operand:VI 1 "vlogical_operand") (match_operand:VI 2 "vlogical_operand"))] UNSPEC_PREDICATE)) (set (match_dup 3) (ne:VI (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 "register_operand" "=r") (lt:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "TARGET_P9_VECTOR" { operands[3] = gen_reg_rtx (mode); }) ;; This expansion handles the V16QI, V8HI, and V4SI modes in the ;; implementation of the vec_all_nez and vec_any_eqz built-in ;; functions on Power9. (define_expand "vector_nez__p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(unspec:VI [(match_operand:VI 1 "vlogical_operand") (match_operand:VI 2 "vlogical_operand")] UNSPEC_NEZ_P)] UNSPEC_PREDICATE)) (set (match_operand:VI 0 "vlogical_operand") (unspec:VI [(match_dup 1) (match_dup 2)] UNSPEC_NEZ_P))])] "TARGET_P9_VECTOR" "") ;; This expansion handles the V2DI mode in the implementation of the ;; vec_all_ne built-in function on Power9. ;; ;; Since the Power9 "xvcmpne." instruction does not support DImode, ;; this expands into the same rtl that would be used for the Power8 ;; architecture. (define_expand "vector_ne_v2di_p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:V2DI 1 "vlogical_operand") (match_operand:V2DI 2 "vlogical_operand"))] UNSPEC_PREDICATE)) (set (match_dup 3) (eq:V2DI (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 "register_operand" "=r") (eq:SI (reg:CC CR6_REGNO) (const_int 0)))] "TARGET_P9_VECTOR" { operands[3] = gen_reg_rtx (V2DImode); }) (define_expand "vector_ne_v1ti_p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:V1TI 1 "altivec_register_operand") (match_operand:V1TI 2 "altivec_register_operand"))] UNSPEC_PREDICATE)) (set (match_dup 3) (eq:V1TI (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 "register_operand" "=r") (eq:SI (reg:CC CR6_REGNO) (const_int 0)))] "TARGET_POWER10" { operands[3] = gen_reg_rtx (V1TImode); }) ;; This expansion handles the V2DI mode in the implementation of the ;; vec_any_eq built-in function on Power9. ;; ;; Since the Power9 "xvcmpne." instruction does not support DImode, ;; this expands into the same rtl that would be used for the Power8 ;; architecture. (define_expand "vector_ae_v2di_p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:V2DI 1 "vlogical_operand") (match_operand:V2DI 2 "vlogical_operand"))] UNSPEC_PREDICATE)) (set (match_dup 3) (eq:V2DI (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 "register_operand" "=r") (eq:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "TARGET_P9_VECTOR" { operands[3] = gen_reg_rtx (V2DImode); }) (define_expand "vector_ae_v1ti_p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:V1TI 1 "altivec_register_operand") (match_operand:V1TI 2 "altivec_register_operand"))] UNSPEC_PREDICATE)) (set (match_dup 3) (eq:V1TI (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 "register_operand" "=r") (eq:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "TARGET_POWER10" { operands[3] = gen_reg_rtx (V1TImode); }) ;; This expansion handles the V4SF and V2DF modes in the Power9 ;; implementation of the vec_all_ne built-in functions. Note that the ;; expansions for this pattern with these modes makes no use of power9- ;; specific instructions since there are no new power9 instructions ;; for vector compare not equal with floating point arguments. (define_expand "vector_ne__p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:VEC_F 1 "vlogical_operand") (match_operand:VEC_F 2 "vlogical_operand"))] UNSPEC_PREDICATE)) (set (match_dup 3) (eq:VEC_F (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 "register_operand" "=r") (eq:SI (reg:CC CR6_REGNO) (const_int 0)))] "TARGET_P9_VECTOR" { operands[3] = gen_reg_rtx (mode); }) ;; This expansion handles the V4SF and V2DF modes in the Power9 ;; implementation of the vec_any_eq built-in functions. Note that the ;; expansions for this pattern with these modes makes no use of power9- ;; specific instructions since there are no new power9 instructions ;; for vector compare not equal with floating point arguments. (define_expand "vector_ae__p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:VEC_F 1 "vlogical_operand") (match_operand:VEC_F 2 "vlogical_operand"))] UNSPEC_PREDICATE)) (set (match_dup 3) (eq:VEC_F (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 "register_operand" "=r") (eq:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "TARGET_P9_VECTOR" { operands[3] = gen_reg_rtx (mode); }) (define_expand "vector_gt__p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(gt:CC (match_operand:VEC_A 1 "vlogical_operand") (match_operand:VEC_A 2 "vlogical_operand"))] UNSPEC_PREDICATE)) (set (match_operand:VEC_A 0 "vlogical_operand") (gt:VEC_A (match_dup 1) (match_dup 2)))])] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "vector_gt_v1ti_p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(gt:CC (match_operand:V1TI 1 "vlogical_operand") (match_operand:V1TI 2 "vlogical_operand"))] UNSPEC_PREDICATE)) (set (match_operand:V1TI 0 "vlogical_operand") (gt:V1TI (match_dup 1) (match_dup 2)))])] "TARGET_POWER10" "") (define_expand "vector_ge__p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(ge:CC (match_operand:VEC_F 1 "vfloat_operand") (match_operand:VEC_F 2 "vfloat_operand"))] UNSPEC_PREDICATE)) (set (match_operand:VEC_F 0 "vfloat_operand") (ge:VEC_F (match_dup 1) (match_dup 2)))])] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") (define_expand "vector_gtu__p" [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(gtu:CC (match_operand:VEC_IC 1 "vint_operand") (match_operand:VEC_IC 2 "vint_operand"))] UNSPEC_PREDICATE)) (set (match_operand:VEC_IC 0 "vlogical_operand") (gtu:VEC_IC (match_dup 1) (match_dup 2)))])] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") ;; AltiVec/VSX predicates. ;; This expansion is triggered during expansion of predicate built-in ;; functions (built-ins defined with the RS6000_BUILTIN_P macro) by the ;; altivec_expand_predicate_builtin() function when the value of the ;; integer constant first argument equals zero (aka __CR6_EQ in altivec.h). (define_expand "cr6_test_for_zero" [(set (match_operand:SI 0 "register_operand" "=r") (eq:SI (reg:CC CR6_REGNO) (const_int 0)))] "TARGET_ALTIVEC || TARGET_VSX" "") ;; This expansion is triggered during expansion of predicate built-in ;; functions (built-ins defined with the RS6000_BUILTIN_P macro) by the ;; altivec_expand_predicate_builtin() function when the value of the ;; integer constant first argument equals one (aka __CR6_EQ_REV in altivec.h). (define_expand "cr6_test_for_zero_reverse" [(set (match_operand:SI 0 "register_operand" "=r") (eq:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "TARGET_ALTIVEC || TARGET_VSX" "") ;; This expansion is triggered during expansion of predicate built-in ;; functions (built-ins defined with the RS6000_BUILTIN_P macro) by the ;; altivec_expand_predicate_builtin() function when the value of the ;; integer constant first argument equals two (aka __CR6_LT in altivec.h). (define_expand "cr6_test_for_lt" [(set (match_operand:SI 0 "register_operand" "=r") (lt:SI (reg:CC CR6_REGNO) (const_int 0)))] "TARGET_ALTIVEC || TARGET_VSX" "") ;; This expansion is triggered during expansion of predicate built-in ;; functions (built-ins defined with the RS6000_BUILTIN_P macro) by the ;; altivec_expand_predicate_builtin() function when the value of the ;; integer constant first argument equals three ;; (aka __CR6_LT_REV in altivec.h). (define_expand "cr6_test_for_lt_reverse" [(set (match_operand:SI 0 "register_operand" "=r") (lt:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "TARGET_ALTIVEC || TARGET_VSX" "") ;; Vector count leading zeros (define_expand "clz2" [(set (match_operand:VEC_I 0 "register_operand") (clz:VEC_I (match_operand:VEC_I 1 "register_operand")))] "TARGET_P8_VECTOR") ;; Vector count trailing zeros (define_expand "ctz2" [(set (match_operand:VEC_I 0 "register_operand") (ctz:VEC_I (match_operand:VEC_I 1 "register_operand")))] "TARGET_P9_VECTOR") ;; Vector population count (define_expand "popcount2" [(set (match_operand:VEC_I 0 "register_operand") (popcount:VEC_I (match_operand:VEC_I 1 "register_operand")))] "TARGET_P8_VECTOR") ;; Vector parity (define_expand "parity2" [(set (match_operand:VEC_IP 0 "register_operand") (parity:VEC_IP (match_operand:VEC_IP 1 "register_operand")))] "TARGET_P9_VECTOR" { rtx op1 = gen_lowpart (V16QImode, operands[1]); rtx res = gen_reg_rtx (V16QImode); emit_insn (gen_popcountv16qi2 (res, op1)); emit_insn (gen_rs6000_vprtyb2 (operands[0], gen_lowpart (mode, res))); DONE; }) ;; Same size conversions (define_expand "float2" [(set (match_operand:VEC_F 0 "vfloat_operand") (float:VEC_F (match_operand: 1 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_vcfsx (operands[0], operands[1], const0_rtx)); DONE; } }) (define_expand "floatuns2" [(set (match_operand:VEC_F 0 "vfloat_operand") (unsigned_float:VEC_F (match_operand: 1 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_vcfux (operands[0], operands[1], const0_rtx)); DONE; } }) (define_expand "fix_trunc2" [(set (match_operand: 0 "vint_operand") (fix: (match_operand:VEC_F 1 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_vctsxs (operands[0], operands[1], const0_rtx)); DONE; } }) (define_expand "fixuns_trunc2" [(set (match_operand: 0 "vint_operand") (unsigned_fix: (match_operand:VEC_F 1 "vfloat_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_vctuxs (operands[0], operands[1], const0_rtx)); DONE; } }) ;; Vector initialization, set, extract (define_expand "vec_init" [(match_operand:VEC_E 0 "vlogical_operand") (match_operand:VEC_E 1 "")] "VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)" { rs6000_expand_vector_init (operands[0], operands[1]); DONE; }) (define_expand "vec_set" [(match_operand:VEC_E 0 "vlogical_operand") (match_operand: 1 "register_operand") (match_operand 2 "vec_set_index_operand")] "VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)" { rs6000_expand_vector_set (operands[0], operands[1], operands[2]); DONE; }) (define_expand "vec_extract" [(match_operand: 0 "register_operand") (match_operand:VEC_E 1 "vlogical_operand") (match_operand 2 "const_int_operand")] "VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)" { rs6000_expand_vector_extract (operands[0], operands[1], operands[2]); DONE; }) ;; Convert double word types to single word types (define_expand "vec_pack_trunc_v2df" [(match_operand:V4SF 0 "vfloat_operand") (match_operand:V2DF 1 "vfloat_operand") (match_operand:V2DF 2 "vfloat_operand")] "VECTOR_UNIT_VSX_P (V2DFmode) && TARGET_ALTIVEC" { rtx r1 = gen_reg_rtx (V4SFmode); rtx r2 = gen_reg_rtx (V4SFmode); emit_insn (gen_vsx_xvcvdpsp (r1, operands[1])); emit_insn (gen_vsx_xvcvdpsp (r2, operands[2])); rs6000_expand_extract_even (operands[0], r1, r2); DONE; }) (define_expand "vec_pack_sfix_trunc_v2df" [(match_operand:V4SI 0 "vint_operand") (match_operand:V2DF 1 "vfloat_operand") (match_operand:V2DF 2 "vfloat_operand")] "VECTOR_UNIT_VSX_P (V2DFmode) && TARGET_ALTIVEC" { rtx r1 = gen_reg_rtx (V4SImode); rtx r2 = gen_reg_rtx (V4SImode); emit_insn (gen_vsx_xvcvdpsxws (r1, operands[1])); emit_insn (gen_vsx_xvcvdpsxws (r2, operands[2])); rs6000_expand_extract_even (operands[0], r1, r2); DONE; }) (define_expand "vec_pack_ufix_trunc_v2df" [(match_operand:V4SI 0 "vint_operand") (match_operand:V2DF 1 "vfloat_operand") (match_operand:V2DF 2 "vfloat_operand")] "VECTOR_UNIT_VSX_P (V2DFmode) && TARGET_ALTIVEC" { rtx r1 = gen_reg_rtx (V4SImode); rtx r2 = gen_reg_rtx (V4SImode); emit_insn (gen_vsx_xvcvdpuxws (r1, operands[1])); emit_insn (gen_vsx_xvcvdpuxws (r2, operands[2])); rs6000_expand_extract_even (operands[0], r1, r2); DONE; }) ;; Convert single word types to double word (define_expand "vec_unpacks_hi_v4sf" [(match_operand:V2DF 0 "vfloat_operand") (match_operand:V4SF 1 "vfloat_operand")] "VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode)" { rtx reg = gen_reg_rtx (V4SFmode); rs6000_expand_interleave (reg, operands[1], operands[1], BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvspdp (operands[0], reg)); DONE; }) (define_expand "vec_unpacks_lo_v4sf" [(match_operand:V2DF 0 "vfloat_operand") (match_operand:V4SF 1 "vfloat_operand")] "VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode)" { rtx reg = gen_reg_rtx (V4SFmode); rs6000_expand_interleave (reg, operands[1], operands[1], !BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvspdp (operands[0], reg)); DONE; }) (define_expand "vec_unpacks_float_hi_v4si" [(match_operand:V2DF 0 "vfloat_operand") (match_operand:V4SI 1 "vint_operand")] "VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SImode)" { rtx reg = gen_reg_rtx (V4SImode); rs6000_expand_interleave (reg, operands[1], operands[1], BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvsxwdp (operands[0], reg)); DONE; }) (define_expand "vec_unpacks_float_lo_v4si" [(match_operand:V2DF 0 "vfloat_operand") (match_operand:V4SI 1 "vint_operand")] "VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SImode)" { rtx reg = gen_reg_rtx (V4SImode); rs6000_expand_interleave (reg, operands[1], operands[1], !BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvsxwdp (operands[0], reg)); DONE; }) (define_expand "vec_unpacku_float_hi_v4si" [(match_operand:V2DF 0 "vfloat_operand") (match_operand:V4SI 1 "vint_operand")] "VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SImode)" { rtx reg = gen_reg_rtx (V4SImode); rs6000_expand_interleave (reg, operands[1], operands[1], BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvuxwdp (operands[0], reg)); DONE; }) (define_expand "vec_unpacku_float_lo_v4si" [(match_operand:V2DF 0 "vfloat_operand") (match_operand:V4SI 1 "vint_operand")] "VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SImode)" { rtx reg = gen_reg_rtx (V4SImode); rs6000_expand_interleave (reg, operands[1], operands[1], !BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvuxwdp (operands[0], reg)); DONE; }) ;; Align vector loads with a permute. (define_expand "vec_realign_load_" [(match_operand:VEC_K 0 "vlogical_operand") (match_operand:VEC_K 1 "vlogical_operand") (match_operand:VEC_K 2 "vlogical_operand") (match_operand:V16QI 3 "vlogical_operand")] "VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)" { if (BYTES_BIG_ENDIAN) emit_insn (gen_altivec_vperm_ (operands[0], operands[1], operands[2], operands[3])); else { /* We have changed lvsr to lvsl, so to complete the transformation of vperm for LE, we must swap the inputs. */ rtx unspec = gen_rtx_UNSPEC (mode, gen_rtvec (3, operands[2], operands[1], operands[3]), UNSPEC_VPERM); emit_move_insn (operands[0], unspec); } DONE; }) ;; Under VSX, vectors of 4/8 byte alignments do not need to be aligned ;; since the load already handles it. (define_expand "movmisalign" [(set (match_operand:VEC_N 0 "nonimmediate_operand") (match_operand:VEC_N 1 "any_operand"))] "VECTOR_MEM_VSX_P (mode) && TARGET_ALLOW_MOVMISALIGN" { rs6000_emit_move (operands[0], operands[1], mode); DONE; }) ;; Vector shift right in bits. Currently supported ony for shift ;; amounts that can be expressed as byte shifts (divisible by 8). ;; General shift amounts can be supported using vsro + vsr. We're ;; not expecting to see these yet (the vectorizer currently ;; generates only shifts by a whole number of vector elements). ;; Note that the vec_shr operation is actually defined as ;; 'shift toward element 0' so is a shr for LE and shl for BE. (define_expand "vec_shr_" [(match_operand:VEC_L 0 "vlogical_operand") (match_operand:VEC_L 1 "vlogical_operand") (match_operand:QI 2 "reg_or_short_operand")] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { rtx bitshift = operands[2]; rtx shift; rtx insn; rtx zero_reg, op1, op2; HOST_WIDE_INT bitshift_val; HOST_WIDE_INT byteshift_val; if (! CONSTANT_P (bitshift)) FAIL; bitshift_val = INTVAL (bitshift); if (bitshift_val & 0x7) FAIL; byteshift_val = (bitshift_val >> 3); zero_reg = gen_reg_rtx (mode); emit_move_insn (zero_reg, CONST0_RTX (mode)); if (!BYTES_BIG_ENDIAN) { /* Note, byteshift_val can be 0! */ byteshift_val = -byteshift_val & 15; op1 = zero_reg; op2 = operands[1]; } else { op1 = operands[1]; op2 = zero_reg; } if (TARGET_VSX && (byteshift_val & 0x3) == 0) { shift = gen_rtx_CONST_INT (QImode, byteshift_val >> 2); insn = gen_vsx_xxsldwi_ (operands[0], op1, op2, shift); } else { shift = gen_rtx_CONST_INT (QImode, byteshift_val); insn = gen_altivec_vsldoi_ (operands[0], op1, op2, shift); } emit_insn (insn); DONE; }) ;; Expanders for rotate each element in a vector (define_expand "vrotl3" [(set (match_operand:VEC_IC 0 "vint_operand") (rotate:VEC_IC (match_operand:VEC_IC 1 "vint_operand") (match_operand:VEC_IC 2 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { /* Shift amount in needs to be put in bits[57:63] of 128-bit operand2. */ if (mode == V1TImode) { rtx tmp = gen_reg_rtx (V1TImode); emit_insn (gen_xxswapd_v1ti (tmp, operands[2])); emit_insn (gen_altivec_vrlq (operands[0], operands[1], tmp)); DONE; } }) ;; Expanders for rotatert to make use of vrotl (define_expand "vrotr3" [(set (match_operand:VEC_I 0 "vint_operand") (rotatert:VEC_I (match_operand:VEC_I 1 "vint_operand") (match_operand:VEC_I 2 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { rtx rot_count = gen_reg_rtx (mode); emit_insn (gen_neg2 (rot_count, operands[2])); emit_insn (gen_vrotl3 (operands[0], operands[1], rot_count)); DONE; }) ;; Expanders for arithmetic shift left on each vector element (define_expand "vashl3" [(set (match_operand:VEC_I 0 "vint_operand") (ashift:VEC_I (match_operand:VEC_I 1 "vint_operand") (match_operand:VEC_I 2 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") ;; No immediate version of this 128-bit instruction (define_expand "vashl3" [(set (match_operand:VEC_TI 0 "vsx_register_operand" "=v") (ashift:VEC_TI (match_operand:VEC_TI 1 "vsx_register_operand") (match_operand:VEC_TI 2 "vsx_register_operand")))] "TARGET_POWER10" { /* Shift amount in needs to be put in bits[57:63] of 128-bit operand2. */ rtx tmp = gen_reg_rtx (mode); emit_insn (gen_xxswapd_v1ti (tmp, operands[2])); emit_insn(gen_altivec_vslq_ (operands[0], operands[1], tmp)); DONE; }) ;; Expanders for logical shift right on each vector element (define_expand "vlshr3" [(set (match_operand:VEC_I 0 "vint_operand") (lshiftrt:VEC_I (match_operand:VEC_I 1 "vint_operand") (match_operand:VEC_I 2 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" "") ;; No immediate version of this 128-bit instruction (define_expand "vlshr3" [(set (match_operand:VEC_TI 0 "vsx_register_operand" "=v") (lshiftrt:VEC_TI (match_operand:VEC_TI 1 "vsx_register_operand") (match_operand:VEC_TI 2 "vsx_register_operand")))] "TARGET_POWER10" { /* Shift amount in needs to be put into bits[57:63] of 128-bit operand2. */ rtx tmp = gen_reg_rtx (mode); emit_insn (gen_xxswapd_v1ti (tmp, operands[2])); emit_insn(gen_altivec_vsrq_ (operands[0], operands[1], tmp)); DONE; }) ;; Expanders for arithmetic shift right on each vector element (define_expand "vashr3" [(set (match_operand:VEC_IC 0 "vint_operand") (ashiftrt:VEC_IC (match_operand:VEC_IC 1 "vint_operand") (match_operand:VEC_IC 2 "vint_operand")))] "VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)" { /* Shift amount in needs to be put in bits[57:63] of 128-bit operand2. */ if (mode == V1TImode) { rtx tmp = gen_reg_rtx (V1TImode); emit_insn (gen_xxswapd_v1ti (tmp, operands[2])); emit_insn (gen_altivec_vsraq (operands[0], operands[1], tmp)); DONE; } }) ;; Vector reduction expanders for VSX ; The (VEC_reduc:... ; (op1) ; (unspec:... [(const_int 0)] UNSPEC_REDUC)) ; ; is to allow us to use a code iterator, but not completely list all of the ; vector rotates, etc. to prevent canonicalization (define_expand "reduc__scal_" [(match_operand: 0 "register_operand") (VEC_reduc:VEC_F (match_operand:VEC_F 1 "vfloat_operand") (unspec:VEC_F [(const_int 0)] UNSPEC_REDUC))] "VECTOR_UNIT_VSX_P (mode)" { rtx vec = gen_reg_rtx (mode); rtx elt = BYTES_BIG_ENDIAN ? gen_int_mode (GET_MODE_NUNITS (mode) - 1, QImode) : const0_rtx; emit_insn (gen_vsx_reduc__ (vec, operand1)); emit_insn (gen_vsx_extract_ (operand0, vec, elt)); DONE; })