/* Help friends in C++. Copyright (C) 1997-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "cp-tree.h" /* Friend data structures are described in cp-tree.h. */ /* The GLOBAL_FRIEND scope (functions, classes, or templates) is regarded as a friend of every class. This is only used by libcc1, to enable GDB's code snippets to access private members without disabling access control in general, which could cause different template overload resolution results when accessibility matters (e.g. tests for an accessible member). */ static GTY(()) tree global_friend; /* Set the GLOBAL_FRIEND for this compilation session. It might be set multiple times, but always to the same scope. */ void set_global_friend (tree scope) { gcc_checking_assert (scope != NULL_TREE); gcc_assert (!global_friend || global_friend == scope); global_friend = scope; } /* Return TRUE if SCOPE is the global friend. */ bool is_global_friend (tree scope) { gcc_checking_assert (scope != NULL_TREE); if (global_friend == scope) return true; if (!global_friend) return false; if (is_specialization_of_friend (global_friend, scope)) return true; return false; } /* Returns nonzero if SUPPLICANT is a friend of TYPE. */ int is_friend (tree type, tree supplicant) { int declp; tree list; tree context; if (supplicant == NULL_TREE || type == NULL_TREE) return 0; if (is_global_friend (supplicant)) return 1; declp = DECL_P (supplicant); if (declp) /* It's a function decl. */ { tree list = DECL_FRIENDLIST (TYPE_MAIN_DECL (type)); tree name = DECL_NAME (supplicant); for (; list ; list = TREE_CHAIN (list)) { if (name == FRIEND_NAME (list)) { tree friends = FRIEND_DECLS (list); for (; friends ; friends = TREE_CHAIN (friends)) { tree this_friend = TREE_VALUE (friends); if (this_friend == NULL_TREE) continue; if (supplicant == this_friend) return 1; if (is_specialization_of_friend (supplicant, this_friend)) return 1; } break; } } } else /* It's a type. */ { if (same_type_p (supplicant, type)) return 1; list = CLASSTYPE_FRIEND_CLASSES (TREE_TYPE (TYPE_MAIN_DECL (type))); for (; list ; list = TREE_CHAIN (list)) { tree t = TREE_VALUE (list); if (TREE_CODE (t) == TEMPLATE_DECL ? is_specialization_of_friend (TYPE_MAIN_DECL (supplicant), t) : same_type_p (supplicant, t)) return 1; } } if (declp) { if (DECL_FUNCTION_MEMBER_P (supplicant)) context = DECL_CONTEXT (supplicant); else if (tree fc = DECL_FRIEND_CONTEXT (supplicant)) context = fc; else context = NULL_TREE; } else { if (TYPE_CLASS_SCOPE_P (supplicant)) /* Nested classes get the same access as their enclosing types, as per DR 45 (this is a change from the standard). */ context = TYPE_CONTEXT (supplicant); else /* Local classes have the same access as the enclosing function. */ context = decl_function_context (TYPE_MAIN_DECL (supplicant)); } /* A namespace is not friend to anybody. */ if (context && TREE_CODE (context) == NAMESPACE_DECL) context = NULL_TREE; if (context) return is_friend (type, context); return 0; } /* Add a new friend to the friends of the aggregate type TYPE. DECL is the FUNCTION_DECL of the friend being added. If COMPLAIN is true, warning about duplicate friend is issued. We want to have this diagnostics during parsing but not when a template is being instantiated. */ void add_friend (tree type, tree decl, bool complain) { tree typedecl; tree list; tree name; tree ctx; if (decl == error_mark_node) return; typedecl = TYPE_MAIN_DECL (type); list = DECL_FRIENDLIST (typedecl); name = DECL_NAME (decl); type = TREE_TYPE (typedecl); while (list) { if (name == FRIEND_NAME (list)) { tree friends = FRIEND_DECLS (list); for (; friends ; friends = TREE_CHAIN (friends)) { if (decl == TREE_VALUE (friends)) { if (complain) warning (OPT_Wredundant_decls, "%qD is already a friend of class %qT", decl, type); return; } } TREE_VALUE (list) = tree_cons (NULL_TREE, decl, TREE_VALUE (list)); break; } list = TREE_CHAIN (list); } ctx = DECL_CONTEXT (decl); if (ctx && CLASS_TYPE_P (ctx) && !uses_template_parms (ctx)) perform_or_defer_access_check (TYPE_BINFO (ctx), decl, decl, tf_warning_or_error); maybe_add_class_template_decl_list (type, decl, /*friend_p=*/1); if (!list) DECL_FRIENDLIST (typedecl) = tree_cons (DECL_NAME (decl), build_tree_list (NULL_TREE, decl), DECL_FRIENDLIST (typedecl)); if (!uses_template_parms (type)) DECL_BEFRIENDING_CLASSES (decl) = tree_cons (NULL_TREE, type, DECL_BEFRIENDING_CLASSES (decl)); } /* Make FRIEND_TYPE a friend class to TYPE. If FRIEND_TYPE has already been defined, we make all of its member functions friends of TYPE. If not, we make it a pending friend, which can later be added when its definition is seen. If a type is defined, then its TYPE_DECL's DECL_UNDEFINED_FRIENDS contains a (possibly empty) list of friend classes that are not defined. If a type has not yet been defined, then the DECL_WAITING_FRIENDS contains a list of types waiting to make it their friend. Note that these two can both be in use at the same time! If COMPLAIN is true, warning about duplicate friend is issued. We want to have this diagnostics during parsing but not when a template is being instantiated. */ void make_friend_class (tree type, tree friend_type, bool complain) { tree classes; /* CLASS_TEMPLATE_DEPTH counts the number of template headers for the enclosing class. FRIEND_DEPTH counts the number of template headers used for this friend declaration. TEMPLATE_MEMBER_P, defined inside the `if' block for TYPENAME_TYPE case, is true if a template header in FRIEND_DEPTH is intended for DECLARATOR. For example, the code template struct A { template struct B { template template friend class C::D; }; }; will eventually give the following results 1. CLASS_TEMPLATE_DEPTH equals 2 (for `T' and `U'). 2. FRIEND_DEPTH equals 2 (for `V' and `W'). 3. TEMPLATE_MEMBER_P is true (for `W'). The friend is a template friend iff FRIEND_DEPTH is nonzero. */ int class_template_depth = template_class_depth (type); int friend_depth = 0; if (current_template_depth) /* When processing a friend declaration at parse time, just compare the current depth to that of the class template. */ friend_depth = current_template_depth - class_template_depth; else { /* Otherwise, we got here from instantiate_class_template. Determine the friend depth by looking at the template parameters used within FRIEND_TYPE. */ gcc_checking_assert (class_template_depth == 0); while (uses_template_parms_level (friend_type, friend_depth + 1)) ++friend_depth; } if (! MAYBE_CLASS_TYPE_P (friend_type) && TREE_CODE (friend_type) != TEMPLATE_TEMPLATE_PARM) { /* N1791: If the type specifier in a friend declaration designates a (possibly cv-qualified) class type, that class is declared as a friend; otherwise, the friend declaration is ignored. So don't complain in C++11 mode. */ if (cxx_dialect < cxx11) pedwarn (input_location, complain ? 0 : OPT_Wpedantic, "invalid type %qT declared %", friend_type); return; } friend_type = cv_unqualified (friend_type); if (check_for_bare_parameter_packs (friend_type)) return; if (friend_depth) { /* [temp.friend] Friend declarations shall not declare partial specializations. */ if (CLASS_TYPE_P (friend_type) && CLASSTYPE_TEMPLATE_SPECIALIZATION (friend_type) && uses_template_parms (friend_type)) { error ("partial specialization %qT declared %", friend_type); return; } if (TYPE_TEMPLATE_INFO (friend_type) && !PRIMARY_TEMPLATE_P (TYPE_TI_TEMPLATE (friend_type))) { auto_diagnostic_group d; error ("%qT is not a template", friend_type); inform (location_of (friend_type), "previous declaration here"); if (TYPE_CLASS_SCOPE_P (friend_type) && CLASSTYPE_TEMPLATE_INFO (TYPE_CONTEXT (friend_type)) && currently_open_class (TYPE_CONTEXT (friend_type))) inform (input_location, "perhaps you need explicit template " "arguments in your nested-name-specifier"); return; } } /* It makes sense for a template class to be friends with itself, that means the instantiations can be friendly. Other cases are not so meaningful. */ if (!friend_depth && same_type_p (type, friend_type)) { if (complain) warning (0, "class %qT is implicitly friends with itself", type); return; } /* [temp.friend] A friend of a class or class template can be a function or class template, a specialization of a function template or class template, or an ordinary (nontemplate) function or class. */ if (!friend_depth) ;/* ok */ else if (TREE_CODE (friend_type) == TYPENAME_TYPE) { if (TREE_CODE (TYPENAME_TYPE_FULLNAME (friend_type)) == TEMPLATE_ID_EXPR) { /* template friend class T::X; */ /* [temp.friend] Friend declarations shall not declare partial specializations. */ error ("partial specialization %qT declared %", friend_type); return; } else { /* We will figure this out later. */ bool template_member_p = false; tree ctype = TYPE_CONTEXT (friend_type); tree name = TYPE_IDENTIFIER (friend_type); tree decl; /* We need to distinguish a TYPENAME_TYPE for the non-template class B in template friend class A::B; vs for the class template B in template template friend class A::B; */ if (current_template_depth && !uses_template_parms_level (ctype, current_template_depth)) template_member_p = true; if (class_template_depth) { /* We rely on tsubst_friend_class to check the validity of the declaration later. */ if (template_member_p) friend_type = make_unbound_class_template (ctype, name, current_template_parms, tf_error); else friend_type = make_typename_type (ctype, name, class_type, tf_error); } else { decl = lookup_member (ctype, name, 0, true, tf_warning_or_error); if (!decl) { error ("%qT is not a member of %qT", name, ctype); return; } if (template_member_p && !DECL_CLASS_TEMPLATE_P (decl)) { auto_diagnostic_group d; error ("%qT is not a member class template of %qT", name, ctype); inform (DECL_SOURCE_LOCATION (decl), "%qD declared here", decl); return; } if (!template_member_p && (TREE_CODE (decl) != TYPE_DECL || !CLASS_TYPE_P (TREE_TYPE (decl)))) { auto_diagnostic_group d; error ("%qT is not a nested class of %qT", name, ctype); inform (DECL_SOURCE_LOCATION (decl), "%qD declared here", decl); return; } friend_type = CLASSTYPE_TI_TEMPLATE (TREE_TYPE (decl)); } } } else if (TREE_CODE (friend_type) == TEMPLATE_TYPE_PARM) { /* template friend class T; */ error ("template parameter type %qT declared %", friend_type); return; } else if (TREE_CODE (friend_type) == TEMPLATE_TEMPLATE_PARM) friend_type = TYPE_NAME (friend_type); else if (!CLASSTYPE_TEMPLATE_INFO (friend_type)) { /* template friend class A; where A is not a template */ error ("%q#T is not a template", friend_type); return; } else /* template friend class A; where A is a template */ friend_type = CLASSTYPE_TI_TEMPLATE (friend_type); if (friend_type == error_mark_node) return; /* See if it is already a friend. */ for (classes = CLASSTYPE_FRIEND_CLASSES (type); classes; classes = TREE_CHAIN (classes)) { tree probe = TREE_VALUE (classes); if (TREE_CODE (friend_type) == TEMPLATE_DECL) { if (friend_type == probe) { if (complain) warning (OPT_Wredundant_decls, "%qD is already a friend of %qT", probe, type); break; } } else if (TREE_CODE (probe) != TEMPLATE_DECL) { if (same_type_p (probe, friend_type)) { if (complain) warning (OPT_Wredundant_decls, "%qT is already a friend of %qT", probe, type); break; } } } if (!classes) { maybe_add_class_template_decl_list (type, friend_type, /*friend_p=*/1); CLASSTYPE_FRIEND_CLASSES (type) = tree_cons (NULL_TREE, friend_type, CLASSTYPE_FRIEND_CLASSES (type)); if (TREE_CODE (friend_type) == TEMPLATE_DECL) friend_type = TREE_TYPE (friend_type); if (!uses_template_parms (type)) CLASSTYPE_BEFRIENDING_CLASSES (friend_type) = tree_cons (NULL_TREE, type, CLASSTYPE_BEFRIENDING_CLASSES (friend_type)); } } /* Record DECL (a FUNCTION_DECL) as a friend of the CURRENT_CLASS_TYPE. If DECL is a member function, SCOPE is the class of which it is a member, as named in the friend declaration. If the friend declaration was explicitly namespace-qualified, SCOPE is that namespace. DECLARATOR is the name of the friend. FUNCDEF_FLAG is true if the friend declaration is a definition of the function. FLAGS is as for grokclass fn. */ tree do_friend (tree scope, tree declarator, tree decl, enum overload_flags flags, bool funcdef_flag) { gcc_assert (TREE_CODE (decl) == FUNCTION_DECL); tree ctype = NULL_TREE; tree in_namespace = NULL_TREE; if (!scope) ; else if (MAYBE_CLASS_TYPE_P (scope)) ctype = scope; else { gcc_checking_assert (TREE_CODE (scope) == NAMESPACE_DECL); in_namespace = scope; } /* Friend functions are unique, until proved otherwise. */ DECL_UNIQUE_FRIEND_P (decl) = 1; if (DECL_OVERRIDE_P (decl) || DECL_FINAL_P (decl)) error ("friend declaration %qD may not have virt-specifiers", decl); tree orig_declarator = declarator; if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR) { declarator = TREE_OPERAND (declarator, 0); if (!identifier_p (declarator)) declarator = OVL_NAME (declarator); } /* CLASS_TEMPLATE_DEPTH counts the number of template headers for the enclosing class. FRIEND_DEPTH counts the number of template headers used for this friend declaration. TEMPLATE_MEMBER_P is true if a template header in FRIEND_DEPTH is intended for DECLARATOR. For example, the code template struct A { template struct B { template template friend void C::f(W); }; }; will eventually give the following results 1. CLASS_TEMPLATE_DEPTH equals 2 (for `T' and `U'). 2. FRIEND_DEPTH equals 2 (for `V' and `W'). 3. CTYPE_DEPTH equals 1 (for `V'). 4. TEMPLATE_MEMBER_P is true (for `W'). */ int class_template_depth = template_class_depth (current_class_type); int friend_depth = current_template_depth - class_template_depth; int ctype_depth = num_template_headers_for_class (ctype); bool template_member_p = friend_depth > ctype_depth; if (ctype) { tree cname = TYPE_NAME (ctype); if (TREE_CODE (cname) == TYPE_DECL) cname = DECL_NAME (cname); /* A method friend. */ if (flags == NO_SPECIAL && declarator == cname) DECL_CXX_CONSTRUCTOR_P (decl) = 1; grokclassfn (ctype, decl, flags); /* A nested class may declare a member of an enclosing class to be a friend, so we do lookup here even if CTYPE is in the process of being defined. */ if (class_template_depth || COMPLETE_OR_OPEN_TYPE_P (ctype)) { if (DECL_TEMPLATE_INFO (decl)) /* DECL is a template specialization. No need to build a new TEMPLATE_DECL. */ ; else if (class_template_depth) /* We rely on tsubst_friend_function to check the validity of the declaration later. */ decl = push_template_decl (decl, /*is_friend=*/true); else decl = check_classfn (ctype, decl, template_member_p ? current_template_parms : NULL_TREE); if ((template_member_p /* Always pull out the TEMPLATE_DECL if we have a friend template in a class template so that it gets tsubsted properly later on (59956). tsubst_friend_function knows how to tell this apart from a member template. */ || (class_template_depth && friend_depth)) && decl && TREE_CODE (decl) == FUNCTION_DECL) decl = DECL_TI_TEMPLATE (decl); } else error ("member %qD declared as friend before type %qT defined", decl, ctype); } else { /* Namespace-scope friend function. */ if (funcdef_flag) SET_DECL_FRIEND_CONTEXT (decl, current_class_type); if (! DECL_USE_TEMPLATE (decl)) { /* We must check whether the decl refers to template arguments before push_template_decl adds a reference to the containing template class. */ int warn = (warn_nontemplate_friend && ! funcdef_flag && ! friend_depth && current_template_parms && uses_template_parms (decl)); if (friend_depth || class_template_depth) /* We can't call pushdecl for a template class, since in general, such a declaration depends on template parameters. Instead, we call pushdecl when the class is instantiated. */ decl = push_template_decl (decl, /*is_friend=*/true); else if (current_function_decl && !in_namespace) /* pushdecl will check there's a local decl already. */ decl = pushdecl (decl, /*hiding=*/true); else { /* We can't use pushdecl, as we might be in a template class specialization, and pushdecl will insert an unqualified friend decl into the template parameter scope, rather than the namespace containing it. */ tree ns = decl_namespace_context (decl); push_nested_namespace (ns); decl = pushdecl_namespace_level (decl, /*hiding=*/true); pop_nested_namespace (ns); } if (warn) { static int explained; bool warned; auto_diagnostic_group d; warned = warning (OPT_Wnon_template_friend, "friend declaration " "%q#D declares a non-template function", decl); if (! explained && warned) { inform (input_location, "(if this is not what you intended, " "make sure the function template has already been " "declared and add %<<>%> after the function name " "here)"); explained = 1; } } } } if (decl == error_mark_node) return error_mark_node; if (!class_template_depth && DECL_IMPLICIT_INSTANTIATION (decl) && TREE_CODE (DECL_TI_TEMPLATE (decl)) != TEMPLATE_DECL) /* "[if no non-template match is found,] each remaining function template is replaced with the specialization chosen by deduction from the friend declaration or discarded if deduction fails." set_decl_namespace or check_classfn set DECL_IMPLICIT_INSTANTIATION to indicate that we need a template match, so ask check_explicit_specialization to find one. */ decl = (check_explicit_specialization (orig_declarator, decl, ctype_depth, 2 * funcdef_flag + 4)); add_friend (current_class_type, (!ctype && friend_depth) ? DECL_TI_TEMPLATE (decl) : decl, /*complain=*/true); return decl; } #include "gt-cp-friend.h"