/* Copyright (C) 1989-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* This is a temporary specialization of code from libgcc/libgcc2.c. */ #include "soft-fp.h" #include "quad-float128.h" /* Use the correct built-in function based on whether TFmode is _Float128 or long double. See quad-float128.h for more details. */ #ifndef __LONG_DOUBLE_IEEE128__ #define COPYSIGN(x,y) __builtin_copysignf128 (x, y) #define INFINITY __builtin_inff128 () #define FABS __builtin_fabsf128 #else #define COPYSIGN(x,y) __builtin_copysignl (x, y) #define INFINITY __builtin_infl () #define FABS __builtin_fabsl #endif #define isnan __builtin_isnan #define isinf __builtin_isinf #define isfinite __builtin_isfinite #if defined(FLOAT128_HW_INSNS) && !defined(__divkc3) #define __divkc3 __divkc3_sw #endif #ifndef __LONG_DOUBLE_IEEE128__ #define RBIG (__LIBGCC_KF_MAX__ / 2) #define RMIN (__LIBGCC_KF_MIN__) #define RMIN2 (__LIBGCC_KF_EPSILON__) #define RMINSCAL (1 / __LIBGCC_KF_EPSILON__) #define RMAX2 (RBIG * RMIN2) #else #define RBIG (__LIBGCC_TF_MAX__ / 2) #define RMIN (__LIBGCC_TF_MIN__) #define RMIN2 (__LIBGCC_TF_EPSILON__) #define RMINSCAL (1 / __LIBGCC_TF_EPSILON__) #define RMAX2 (RBIG * RMIN2) #endif TCtype __divkc3 (TFtype a, TFtype b, TFtype c, TFtype d) { TFtype denom, ratio, x, y; TCtype res; /* long double has significant potential underflow/overflow errors that can be greatly reduced with a limited number of tests and adjustments. */ /* Scale by max(c,d) to reduce chances of denominator overflowing. */ if (FABS (c) < FABS (d)) { /* Prevent underflow when denominator is near max representable. */ if (FABS (d) >= RBIG) { a = a / 2; b = b / 2; c = c / 2; d = d / 2; } /* Avoid overflow/underflow issues when c and d are small. Scaling up helps avoid some underflows. No new overflow possible since c&d < RMIN2. */ if (FABS (d) < RMIN2) { a = a * RMINSCAL; b = b * RMINSCAL; c = c * RMINSCAL; d = d * RMINSCAL; } else { if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (d) < RMAX2)) || ((FABS (b) < RMIN) && (FABS (a) < RMAX2) && (FABS (d) < RMAX2))) { a = a * RMINSCAL; b = b * RMINSCAL; c = c * RMINSCAL; d = d * RMINSCAL; } } ratio = c / d; denom = (c * ratio) + d; /* Choose alternate order of computation if ratio is subnormal. */ if (FABS (ratio) > RMIN) { x = ((a * ratio) + b) / denom; y = ((b * ratio) - a) / denom; } else { x = ((c * (a / d)) + b) / denom; y = ((c * (b / d)) - a) / denom; } } else { /* Prevent underflow when denominator is near max representable. */ if (FABS (c) >= RBIG) { a = a / 2; b = b / 2; c = c / 2; d = d / 2; } /* Avoid overflow/underflow issues when both c and d are small. Scaling up helps avoid some underflows. No new overflow possible since both c&d are less than RMIN2. */ if (FABS (c) < RMIN2) { a = a * RMINSCAL; b = b * RMINSCAL; c = c * RMINSCAL; d = d * RMINSCAL; } else { if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (c) < RMAX2)) || ((FABS (b) < RMIN) && (FABS (a) < RMAX2) && (FABS (c) < RMAX2))) { a = a * RMINSCAL; b = b * RMINSCAL; c = c * RMINSCAL; d = d * RMINSCAL; } } ratio = d / c; denom = (d * ratio) + c; /* Choose alternate order of computation if ratio is subnormal. */ if (FABS (ratio) > RMIN) { x = ((b * ratio) + a) / denom; y = (b - (a * ratio)) / denom; } else { x = (a + (d * (b / c))) / denom; y = (b - (d * (a / c))) / denom; } } /* Recover infinities and zeros that computed as NaN+iNaN; the only cases are nonzero/zero, infinite/finite, and finite/infinite. */ if (isnan (x) && isnan (y)) { if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b))) { x = COPYSIGN (INFINITY, c) * a; y = COPYSIGN (INFINITY, c) * b; } else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d)) { a = COPYSIGN (isinf (a) ? 1 : 0, a); b = COPYSIGN (isinf (b) ? 1 : 0, b); x = INFINITY * (a * c + b * d); y = INFINITY * (b * c - a * d); } else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b)) { c = COPYSIGN (isinf (c) ? 1 : 0, c); d = COPYSIGN (isinf (d) ? 1 : 0, d); x = 0.0 * (a * c + b * d); y = 0.0 * (b * c - a * d); } } __real__ res = x; __imag__ res = y; return res; }