// Written in the D programming language. /** This package implements the hash-based message authentication code (_HMAC) algorithm as defined in $(HTTP tools.ietf.org/html/rfc2104, RFC2104). See also the corresponding $(HTTP en.wikipedia.org/wiki/Hash-based_message_authentication_code, Wikipedia article). $(SCRIPT inhibitQuickIndex = 1;) Macros: License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0). Source: $(PHOBOSSRC std/digest/hmac.d) */ module std.digest.hmac; import std.digest : isDigest, hasBlockSize, isDigestibleRange, DigestType; import std.meta : allSatisfy; @safe: /** * Template API HMAC implementation. * * This implements an _HMAC over the digest H. If H doesn't provide * information about the block size, it can be supplied explicitly using * the second overload. * * This type conforms to $(REF isDigest, std,digest). */ /// Compute HMAC over an input string @safe unittest { import std.ascii : LetterCase; import std.digest : toHexString; import std.digest.sha : SHA1; import std.string : representation; auto secret = "secret".representation; assert("The quick brown fox jumps over the lazy dog" .representation .hmac!SHA1(secret) .toHexString!(LetterCase.lower) == "198ea1ea04c435c1246b586a06d5cf11c3ffcda6"); } template HMAC(H) if (isDigest!H && hasBlockSize!H) { alias HMAC = HMAC!(H, H.blockSize); } /** * Overload of HMAC to be used if H doesn't provide information about its * block size. */ struct HMAC(H, size_t hashBlockSize) if (hashBlockSize % 8 == 0) { enum blockSize = hashBlockSize; private H digest; private ubyte[blockSize / 8] key; /** * Constructs the HMAC digest using the specified secret. */ this(scope const(ubyte)[] secret) { // if secret is too long, shorten it by computing its hash typeof(digest.finish()) buffer = void; typeof(secret) secretBytes = secret; if (secret.length > blockSize / 8) { digest.start(); digest.put(secret); buffer = digest.finish(); secretBytes = buffer[]; } // if secret is too short, it will be padded with zeroes // (the key buffer is already zero-initialized) import std.algorithm.mutation : copy; secretBytes.copy(key[]); start(); } /// @safe pure nothrow @nogc unittest { import std.digest.sha : SHA1; import std.string : representation; auto hmac = HMAC!SHA1("My s3cR3T keY".representation); hmac.put("Hello, world".representation); static immutable expected = [ 130, 32, 235, 44, 208, 141, 150, 232, 211, 214, 162, 195, 188, 127, 52, 89, 100, 68, 90, 216]; assert(hmac.finish() == expected); } /** * Reinitializes the digest, making it ready for reuse. * * Note: * The constructor leaves the digest in an initialized state, so that this * method only needs to be called if an unfinished digest is to be reused. * * Returns: * A reference to the digest for convenient chaining. */ ref HMAC!(H, blockSize) start() return { ubyte[blockSize / 8] ipad = void; foreach (immutable i; 0 .. blockSize / 8) ipad[i] = key[i] ^ 0x36; digest.start(); digest.put(ipad[]); return this; } /// @safe pure nothrow @nogc unittest { import std.digest.sha : SHA1; import std.string : representation; string data1 = "Hello, world", data2 = "Hola mundo"; auto hmac = HMAC!SHA1("My s3cR3T keY".representation); hmac.put(data1.representation); hmac.start(); // reset digest hmac.put(data2.representation); // start over static immutable expected = [ 122, 151, 232, 240, 249, 80, 19, 178, 186, 77, 110, 23, 208, 52, 11, 88, 34, 151, 192, 255]; assert(hmac.finish() == expected); } /** * Feeds a piece of data into the hash computation. This method allows the * type to be used as an $(REF OutputRange, std,range). * * Returns: * A reference to the digest for convenient chaining. */ ref HMAC!(H, blockSize) put(in ubyte[] data...) return { digest.put(data); return this; } /// @safe pure nothrow @nogc unittest { import std.digest.hmac, std.digest.sha; import std.string : representation; string data1 = "Hello, world", data2 = "Hola mundo"; auto hmac = HMAC!SHA1("My s3cR3T keY".representation); hmac.put(data1.representation) .put(data2.representation); static immutable expected = [ 197, 57, 52, 3, 13, 194, 13, 36, 117, 228, 8, 11, 111, 51, 165, 3, 123, 31, 251, 113]; assert(hmac.finish() == expected); } /** * Resets the digest and returns the finished hash. */ DigestType!H finish() { ubyte[blockSize / 8] opad = void; foreach (immutable i; 0 .. blockSize / 8) opad[i] = key[i] ^ 0x5c; auto tmp = digest.finish(); digest.start(); digest.put(opad[]); digest.put(tmp); auto result = digest.finish(); start(); // reset the digest return result; } /// @safe pure nothrow @nogc unittest { import std.digest.sha : SHA1; import std.string : representation; string data1 = "Hello, world", data2 = "Hola mundo"; auto hmac = HMAC!SHA1("My s3cR3T keY".representation); auto testDigest = hmac.put(data1.representation) .put(data2.representation) .finish(); static immutable expected = [ 197, 57, 52, 3, 13, 194, 13, 36, 117, 228, 8, 11, 111, 51, 165, 3, 123, 31, 251, 113]; assert(testDigest == expected); } } /// ditto template hmac(H) if (isDigest!H && hasBlockSize!H) { alias hmac = hmac!(H, H.blockSize); } /// ditto template hmac(H, size_t blockSize) if (isDigest!H) { /** * Constructs an HMAC digest with the specified secret. * * Returns: * An instance of HMAC that can be fed data as desired, and finished * to compute the final hash when done. */ auto hmac(scope const(ubyte)[] secret) { return HMAC!(H, blockSize)(secret); } /// @safe pure nothrow @nogc unittest { import std.digest.sha : SHA1; import std.string : representation; string data1 = "Hello, world", data2 = "Hola mundo"; auto digest = hmac!SHA1("My s3cR3T keY".representation) .put(data1.representation) .put(data2.representation) .finish(); static immutable expected = [ 197, 57, 52, 3, 13, 194, 13, 36, 117, 228, 8, 11, 111, 51, 165, 3, 123, 31, 251, 113]; assert(digest == expected); } /** * Computes an _HMAC digest over the given range of data with the * specified secret. * * Returns: * The final _HMAC hash. */ DigestType!H hmac(T...)(scope T data, scope const(ubyte)[] secret) if (allSatisfy!(isDigestibleRange, typeof(data))) { import std.range.primitives : put; auto hash = HMAC!(H, blockSize)(secret); foreach (datum; data) put(hash, datum); return hash.finish(); } /// @safe pure nothrow @nogc unittest { import std.algorithm.iteration : map; import std.digest.sha : SHA1; import std.string : representation; string data = "Hello, world"; auto digest = data.representation .map!(a => cast(ubyte)(a+1)) .hmac!SHA1("My s3cR3T keY".representation); static assert(is(typeof(digest) == ubyte[20])); static immutable expected = [ 163, 208, 118, 179, 216, 93, 17, 10, 84, 200, 87, 104, 244, 111, 136, 214, 167, 210, 58, 10]; assert(digest == expected); } } /// @safe pure nothrow @nogc unittest { import std.digest.sha : SHA1; import std.string : representation; string data1 = "Hello, world", data2 = "Hola mundo"; auto hmac = HMAC!SHA1("My s3cR3T keY".representation); auto digest = hmac.put(data1.representation) .put(data2.representation) .finish(); static immutable expected = [ 197, 57, 52, 3, 13, 194, 13, 36, 117, 228, 8, 11, 111, 51, 165, 3, 123, 31, 251, 113]; assert(digest == expected); } @safe pure nothrow @nogc unittest { import std.digest.md : MD5; import std.range : isOutputRange; static assert(isOutputRange!(HMAC!MD5, ubyte)); static assert(isDigest!(HMAC!MD5)); static assert(hasBlockSize!(HMAC!MD5) && HMAC!MD5.blockSize == MD5.blockSize); } @safe pure nothrow unittest { import std.digest.md : MD5; import std.digest.sha : SHA1, SHA256; // Note, can't be UFCS because we don't want to import inside // version (StdUnittest). import std.digest : toHexString, LetterCase; alias hex = toHexString!(LetterCase.lower); ubyte[] nada; assert(hex(hmac!MD5 (nada, nada)) == "74e6f7298a9c2d168935f58c001bad88"); assert(hex(hmac!SHA1 (nada, nada)) == "fbdb1d1b18aa6c08324b7d64b71fb76370690e1d"); assert(hex(hmac!SHA256(nada, nada)) == "b613679a0814d9ec772f95d778c35fc5ff1697c493715653c6c712144292c5ad"); import std.string : representation; auto key = "key".representation, long_key = ("012345678901234567890123456789012345678901" ~"234567890123456789012345678901234567890123456789").representation, data1 = "The quick brown fox ".representation, data2 = "jumps over the lazy dog".representation, data = data1 ~ data2; assert(hex(data.hmac!MD5 (key)) == "80070713463e7749b90c2dc24911e275"); assert(hex(data.hmac!SHA1 (key)) == "de7c9b85b8b78aa6bc8a7a36f70a90701c9db4d9"); assert(hex(data.hmac!SHA256(key)) == "f7bc83f430538424b13298e6aa6fb143ef4d59a14946175997479dbc2d1a3cd8"); assert(hex(data.hmac!MD5 (long_key)) == "e1728d68e05beae186ea768561963778"); assert(hex(data.hmac!SHA1 (long_key)) == "560d3cd77316e57ab4bba0c186966200d2b37ba3"); assert(hex(data.hmac!SHA256(long_key)) == "a1b0065a5d1edd93152c677e1bc1b1e3bc70d3a76619842e7f733f02b8135c04"); assert(hmac!MD5 (key).put(data1).put(data2).finish == data.hmac!MD5 (key)); assert(hmac!SHA1 (key).put(data1).put(data2).finish == data.hmac!SHA1 (key)); assert(hmac!SHA256(key).put(data1).put(data2).finish == data.hmac!SHA256(key)); }