// class template regex -*- C++ -*-
// Copyright (C) 2010-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/**
* @file bits/regex_compiler.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{regex}
*/
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @addtogroup regex-detail
* @{
*/
/// Base class for scanner.
struct _Scanner_base
{
typedef unsigned int _StateT;
static constexpr _StateT _S_state_at_start = 1 << 0;
static constexpr _StateT _S_state_in_brace = 1 << 2;
static constexpr _StateT _S_state_in_bracket = 1 << 3;
virtual ~_Scanner_base() { };
};
/**
* @brief struct _Scanner. Scans an input range for regex tokens.
*
* The %_Scanner class interprets the regular expression pattern in
* the input range passed to its constructor as a sequence of parse
* tokens passed to the regular expression compiler. The sequence
* of tokens provided depends on the flag settings passed to the
* constructor: different regular expression grammars will interpret
* the same input pattern in syntactically different ways.
*/
template
class _Scanner: public _Scanner_base
{
public:
typedef _InputIterator _IteratorT;
typedef typename std::iterator_traits<_IteratorT>::value_type _CharT;
typedef std::basic_string<_CharT> _StringT;
typedef regex_constants::syntax_option_type _FlagT;
typedef const std::ctype<_CharT> _CtypeT;
/// Token types returned from the scanner.
enum _TokenT
{
_S_token_anychar,
_S_token_backref,
_S_token_bracket_begin,
_S_token_bracket_end,
_S_token_inverse_class,
_S_token_char_class_name,
_S_token_closure0,
_S_token_closure1,
_S_token_collelem_multi,
_S_token_collelem_single,
_S_token_collsymbol,
_S_token_comma,
_S_token_dash,
_S_token_dup_count,
_S_token_eof,
_S_token_equiv_class_name,
_S_token_interval_begin,
_S_token_interval_end,
_S_token_line_begin,
_S_token_line_end,
_S_token_opt,
_S_token_or,
_S_token_ord_char,
_S_token_quoted_char,
_S_token_subexpr_begin,
_S_token_subexpr_end,
_S_token_word_begin,
_S_token_word_end,
_S_token_unknown
};
_Scanner(_IteratorT __begin, _IteratorT __end, _FlagT __flags,
std::locale __loc)
: _M_current(__begin) , _M_end(__end) , _M_flags(__flags),
_M_ctype(std::use_facet<_CtypeT>(__loc)), _M_state(_S_state_at_start)
{ _M_advance(); }
void
_M_advance();
_TokenT
_M_token() const
{ return _M_curToken; }
const _StringT&
_M_value() const
{ return _M_curValue; }
#ifdef _GLIBCXX_DEBUG
std::ostream&
_M_print(std::ostream&);
#endif
private:
void
_M_eat_escape();
void
_M_scan_in_brace();
void
_M_scan_in_bracket();
void
_M_eat_charclass();
void
_M_eat_equivclass();
void
_M_eat_collsymbol();
_IteratorT _M_current;
_IteratorT _M_end;
_FlagT _M_flags;
_CtypeT& _M_ctype;
_TokenT _M_curToken;
_StringT _M_curValue;
_StateT _M_state;
};
template
void
_Scanner<_InputIterator>::
_M_advance()
{
if (_M_current == _M_end)
{
_M_curToken = _S_token_eof;
return;
}
_CharT __c = *_M_current;
if (_M_state & _S_state_in_bracket)
{
_M_scan_in_bracket();
return;
}
if (_M_state & _S_state_in_brace)
{
_M_scan_in_brace();
return;
}
#if 0
// TODO: re-enable line anchors when _M_assertion is implemented.
// See PR libstdc++/47724
else if (_M_state & _S_state_at_start && __c == _M_ctype.widen('^'))
{
_M_curToken = _S_token_line_begin;
++_M_current;
return;
}
else if (__c == _M_ctype.widen('$'))
{
_M_curToken = _S_token_line_end;
++_M_current;
return;
}
#endif
else if (__c == _M_ctype.widen('.'))
{
_M_curToken = _S_token_anychar;
++_M_current;
return;
}
else if (__c == _M_ctype.widen('*'))
{
_M_curToken = _S_token_closure0;
++_M_current;
return;
}
else if (__c == _M_ctype.widen('+'))
{
_M_curToken = _S_token_closure1;
++_M_current;
return;
}
else if (__c == _M_ctype.widen('|'))
{
_M_curToken = _S_token_or;
++_M_current;
return;
}
else if (__c == _M_ctype.widen('['))
{
_M_curToken = _S_token_bracket_begin;
_M_state |= (_S_state_in_bracket | _S_state_at_start);
++_M_current;
return;
}
else if (__c == _M_ctype.widen('\\'))
{
_M_eat_escape();
return;
}
else if (!(_M_flags & (regex_constants::basic | regex_constants::grep)))
{
if (__c == _M_ctype.widen('('))
{
_M_curToken = _S_token_subexpr_begin;
++_M_current;
return;
}
else if (__c == _M_ctype.widen(')'))
{
_M_curToken = _S_token_subexpr_end;
++_M_current;
return;
}
else if (__c == _M_ctype.widen('{'))
{
_M_curToken = _S_token_interval_begin;
_M_state |= _S_state_in_brace;
++_M_current;
return;
}
}
_M_curToken = _S_token_ord_char;
_M_curValue.assign(1, __c);
++_M_current;
}
template
void
_Scanner<_InputIterator>::
_M_scan_in_brace()
{
if (_M_ctype.is(_CtypeT::digit, *_M_current))
{
_M_curToken = _S_token_dup_count;
_M_curValue.assign(1, *_M_current);
++_M_current;
while (_M_current != _M_end
&& _M_ctype.is(_CtypeT::digit, *_M_current))
{
_M_curValue += *_M_current;
++_M_current;
}
return;
}
else if (*_M_current == _M_ctype.widen(','))
{
_M_curToken = _S_token_comma;
++_M_current;
return;
}
if (_M_flags & (regex_constants::basic | regex_constants::grep))
{
if (*_M_current == _M_ctype.widen('\\'))
_M_eat_escape();
}
else
{
if (*_M_current == _M_ctype.widen('}'))
{
_M_curToken = _S_token_interval_end;
_M_state &= ~_S_state_in_brace;
++_M_current;
return;
}
}
}
template
void
_Scanner<_InputIterator>::
_M_scan_in_bracket()
{
if (_M_state & _S_state_at_start && *_M_current == _M_ctype.widen('^'))
{
_M_curToken = _S_token_inverse_class;
_M_state &= ~_S_state_at_start;
++_M_current;
return;
}
else if (*_M_current == _M_ctype.widen('['))
{
++_M_current;
if (_M_current == _M_end)
{
_M_curToken = _S_token_eof;
return;
}
if (*_M_current == _M_ctype.widen('.'))
{
_M_curToken = _S_token_collsymbol;
_M_eat_collsymbol();
return;
}
else if (*_M_current == _M_ctype.widen(':'))
{
_M_curToken = _S_token_char_class_name;
_M_eat_charclass();
return;
}
else if (*_M_current == _M_ctype.widen('='))
{
_M_curToken = _S_token_equiv_class_name;
_M_eat_equivclass();
return;
}
}
else if (*_M_current == _M_ctype.widen('-'))
{
_M_curToken = _S_token_dash;
++_M_current;
return;
}
else if (*_M_current == _M_ctype.widen(']'))
{
if (!(_M_flags & regex_constants::ECMAScript)
|| !(_M_state & _S_state_at_start))
{
// special case: only if _not_ chr first after
// '[' or '[^' and if not ECMAscript
_M_curToken = _S_token_bracket_end;
++_M_current;
return;
}
}
_M_curToken = _S_token_collelem_single;
_M_curValue.assign(1, *_M_current);
++_M_current;
}
template
void
_Scanner<_InputIterator>::
_M_eat_escape()
{
++_M_current;
if (_M_current == _M_end)
{
_M_curToken = _S_token_eof;
return;
}
_CharT __c = *_M_current;
++_M_current;
if (__c == _M_ctype.widen('('))
{
if (!(_M_flags & (regex_constants::basic | regex_constants::grep)))
{
_M_curToken = _S_token_ord_char;
_M_curValue.assign(1, __c);
}
else
_M_curToken = _S_token_subexpr_begin;
}
else if (__c == _M_ctype.widen(')'))
{
if (!(_M_flags & (regex_constants::basic | regex_constants::grep)))
{
_M_curToken = _S_token_ord_char;
_M_curValue.assign(1, __c);
}
else
_M_curToken = _S_token_subexpr_end;
}
else if (__c == _M_ctype.widen('{'))
{
if (!(_M_flags & (regex_constants::basic | regex_constants::grep)))
{
_M_curToken = _S_token_ord_char;
_M_curValue.assign(1, __c);
}
else
{
_M_curToken = _S_token_interval_begin;
_M_state |= _S_state_in_brace;
}
}
else if (__c == _M_ctype.widen('}'))
{
if (!(_M_flags & (regex_constants::basic | regex_constants::grep)))
{
_M_curToken = _S_token_ord_char;
_M_curValue.assign(1, __c);
}
else
{
if (!(_M_state && _S_state_in_brace))
__throw_regex_error(regex_constants::error_badbrace);
_M_state &= ~_S_state_in_brace;
_M_curToken = _S_token_interval_end;
}
}
else if (__c == _M_ctype.widen('x'))
{
++_M_current;
if (_M_current == _M_end)
{
_M_curToken = _S_token_eof;
return;
}
if (_M_ctype.is(_CtypeT::digit, *_M_current))
{
_M_curValue.assign(1, *_M_current);
++_M_current;
if (_M_current == _M_end)
{
_M_curToken = _S_token_eof;
return;
}
if (_M_ctype.is(_CtypeT::digit, *_M_current))
{
_M_curValue += *_M_current;
++_M_current;
return;
}
}
}
else if (__c == _M_ctype.widen('^')
|| __c == _M_ctype.widen('.')
|| __c == _M_ctype.widen('*')
|| __c == _M_ctype.widen('$')
|| __c == _M_ctype.widen('\\'))
{
_M_curToken = _S_token_ord_char;
_M_curValue.assign(1, __c);
}
else if (_M_ctype.is(_CtypeT::digit, __c))
{
_M_curToken = _S_token_backref;
_M_curValue.assign(1, __c);
}
else
__throw_regex_error(regex_constants::error_escape);
}
// Eats a character class or throwns an exception.
// current point to ':' delimiter on entry, char after ']' on return
template
void
_Scanner<_InputIterator>::
_M_eat_charclass()
{
++_M_current; // skip ':'
if (_M_current == _M_end)
__throw_regex_error(regex_constants::error_ctype);
for (_M_curValue.clear();
_M_current != _M_end && *_M_current != _M_ctype.widen(':');
++_M_current)
_M_curValue += *_M_current;
if (_M_current == _M_end)
__throw_regex_error(regex_constants::error_ctype);
++_M_current; // skip ':'
if (*_M_current != _M_ctype.widen(']'))
__throw_regex_error(regex_constants::error_ctype);
++_M_current; // skip ']'
}
template
void
_Scanner<_InputIterator>::
_M_eat_equivclass()
{
++_M_current; // skip '='
if (_M_current == _M_end)
__throw_regex_error(regex_constants::error_collate);
for (_M_curValue.clear();
_M_current != _M_end && *_M_current != _M_ctype.widen('=');
++_M_current)
_M_curValue += *_M_current;
if (_M_current == _M_end)
__throw_regex_error(regex_constants::error_collate);
++_M_current; // skip '='
if (*_M_current != _M_ctype.widen(']'))
__throw_regex_error(regex_constants::error_collate);
++_M_current; // skip ']'
}
template
void
_Scanner<_InputIterator>::
_M_eat_collsymbol()
{
++_M_current; // skip '.'
if (_M_current == _M_end)
__throw_regex_error(regex_constants::error_collate);
for (_M_curValue.clear();
_M_current != _M_end && *_M_current != _M_ctype.widen('.');
++_M_current)
_M_curValue += *_M_current;
if (_M_current == _M_end)
__throw_regex_error(regex_constants::error_collate);
++_M_current; // skip '.'
if (*_M_current != _M_ctype.widen(']'))
__throw_regex_error(regex_constants::error_collate);
++_M_current; // skip ']'
}
#ifdef _GLIBCXX_DEBUG
template
std::ostream&
_Scanner<_InputIterator>::
_M_print(std::ostream& ostr)
{
switch (_M_curToken)
{
case _S_token_anychar:
ostr << "any-character\n";
break;
case _S_token_backref:
ostr << "backref\n";
break;
case _S_token_bracket_begin:
ostr << "bracket-begin\n";
break;
case _S_token_bracket_end:
ostr << "bracket-end\n";
break;
case _S_token_char_class_name:
ostr << "char-class-name \"" << _M_curValue << "\"\n";
break;
case _S_token_closure0:
ostr << "closure0\n";
break;
case _S_token_closure1:
ostr << "closure1\n";
break;
case _S_token_collelem_multi:
ostr << "coll-elem-multi \"" << _M_curValue << "\"\n";
break;
case _S_token_collelem_single:
ostr << "coll-elem-single \"" << _M_curValue << "\"\n";
break;
case _S_token_collsymbol:
ostr << "collsymbol \"" << _M_curValue << "\"\n";
break;
case _S_token_comma:
ostr << "comma\n";
break;
case _S_token_dash:
ostr << "dash\n";
break;
case _S_token_dup_count:
ostr << "dup count: " << _M_curValue << "\n";
break;
case _S_token_eof:
ostr << "EOF\n";
break;
case _S_token_equiv_class_name:
ostr << "equiv-class-name \"" << _M_curValue << "\"\n";
break;
case _S_token_interval_begin:
ostr << "interval begin\n";
break;
case _S_token_interval_end:
ostr << "interval end\n";
break;
case _S_token_line_begin:
ostr << "line begin\n";
break;
case _S_token_line_end:
ostr << "line end\n";
break;
case _S_token_opt:
ostr << "opt\n";
break;
case _S_token_or:
ostr << "or\n";
break;
case _S_token_ord_char:
ostr << "ordinary character: \"" << _M_value() << "\"\n";
break;
case _S_token_quoted_char:
ostr << "quoted char\n";
break;
case _S_token_subexpr_begin:
ostr << "subexpr begin\n";
break;
case _S_token_subexpr_end:
ostr << "subexpr end\n";
break;
case _S_token_word_begin:
ostr << "word begin\n";
break;
case _S_token_word_end:
ostr << "word end\n";
break;
case _S_token_unknown:
ostr << "-- unknown token --\n";
break;
}
return ostr;
}
#endif
/// Builds an NFA from an input iterator interval.
template
class _Compiler
{
public:
typedef _InIter _IterT;
typedef typename std::iterator_traits<_InIter>::value_type _CharT;
typedef std::basic_string<_CharT> _StringT;
typedef regex_constants::syntax_option_type _FlagT;
_Compiler(const _InIter& __b, const _InIter& __e,
_TraitsT& __traits, _FlagT __flags);
const _Nfa&
_M_nfa() const
{ return _M_state_store; }
private:
typedef _Scanner<_InIter> _ScannerT;
typedef typename _ScannerT::_TokenT _TokenT;
typedef std::stack<_StateSeq, std::vector<_StateSeq> > _StackT;
typedef _RangeMatcher<_InIter, _TraitsT> _RMatcherT;
// accepts a specific token or returns false.
bool
_M_match_token(_TokenT __token);
void
_M_disjunction();
bool
_M_alternative();
bool
_M_term();
bool
_M_assertion();
bool
_M_quantifier();
bool
_M_atom();
bool
_M_bracket_expression();
bool
_M_bracket_list(_RMatcherT& __matcher);
bool
_M_follow_list(_RMatcherT& __matcher);
bool
_M_follow_list2(_RMatcherT& __matcher);
bool
_M_expression_term(_RMatcherT& __matcher);
bool
_M_range_expression(_RMatcherT& __matcher);
bool
_M_start_range(_RMatcherT& __matcher);
bool
_M_collating_symbol(_RMatcherT& __matcher);
bool
_M_equivalence_class(_RMatcherT& __matcher);
bool
_M_character_class(_RMatcherT& __matcher);
int
_M_cur_int_value(int __radix);
_TraitsT& _M_traits;
_ScannerT _M_scanner;
_StringT _M_cur_value;
_Nfa _M_state_store;
_StackT _M_stack;
};
template
_Compiler<_InIter, _TraitsT>::
_Compiler(const _InIter& __b, const _InIter& __e, _TraitsT& __traits,
_Compiler<_InIter, _TraitsT>::_FlagT __flags)
: _M_traits(__traits), _M_scanner(__b, __e, __flags, _M_traits.getloc()),
_M_state_store(__flags)
{
typedef _StartTagger<_InIter, _TraitsT> _Start;
typedef _EndTagger<_InIter, _TraitsT> _End;
_StateSeq __r(_M_state_store,
_M_state_store._M_insert_subexpr_begin(_Start(0)));
_M_disjunction();
if (!_M_stack.empty())
{
__r._M_append(_M_stack.top());
_M_stack.pop();
}
__r._M_append(_M_state_store._M_insert_subexpr_end(0, _End(0)));
__r._M_append(_M_state_store._M_insert_accept());
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_match_token(_Compiler<_InIter, _TraitsT>::_TokenT token)
{
if (token == _M_scanner._M_token())
{
_M_cur_value = _M_scanner._M_value();
_M_scanner._M_advance();
return true;
}
return false;
}
template
void
_Compiler<_InIter, _TraitsT>::
_M_disjunction()
{
this->_M_alternative();
if (_M_match_token(_ScannerT::_S_token_or))
{
_StateSeq __alt1 = _M_stack.top(); _M_stack.pop();
this->_M_disjunction();
_StateSeq __alt2 = _M_stack.top(); _M_stack.pop();
_M_stack.push(_StateSeq(__alt1, __alt2));
}
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_alternative()
{
if (this->_M_term())
{
_StateSeq __re = _M_stack.top(); _M_stack.pop();
this->_M_alternative();
if (!_M_stack.empty())
{
__re._M_append(_M_stack.top());
_M_stack.pop();
}
_M_stack.push(__re);
return true;
}
return false;
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_term()
{
if (this->_M_assertion())
return true;
if (this->_M_atom())
{
this->_M_quantifier();
return true;
}
return false;
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_assertion()
{
if (_M_match_token(_ScannerT::_S_token_line_begin))
{
// __m.push(_Matcher::_S_opcode_line_begin);
return true;
}
if (_M_match_token(_ScannerT::_S_token_line_end))
{
// __m.push(_Matcher::_S_opcode_line_end);
return true;
}
if (_M_match_token(_ScannerT::_S_token_word_begin))
{
// __m.push(_Matcher::_S_opcode_word_begin);
return true;
}
if (_M_match_token(_ScannerT::_S_token_word_end))
{
// __m.push(_Matcher::_S_opcode_word_end);
return true;
}
return false;
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_quantifier()
{
if (_M_match_token(_ScannerT::_S_token_closure0))
{
if (_M_stack.empty())
__throw_regex_error(regex_constants::error_badrepeat);
_StateSeq __r(_M_stack.top(), -1);
__r._M_append(__r._M_front());
_M_stack.pop();
_M_stack.push(__r);
return true;
}
if (_M_match_token(_ScannerT::_S_token_closure1))
{
if (_M_stack.empty())
__throw_regex_error(regex_constants::error_badrepeat);
_StateSeq __r(_M_state_store,
_M_state_store.
_M_insert_alt(_S_invalid_state_id,
_M_stack.top()._M_front()));
_M_stack.top()._M_append(__r);
return true;
}
if (_M_match_token(_ScannerT::_S_token_opt))
{
if (_M_stack.empty())
__throw_regex_error(regex_constants::error_badrepeat);
_StateSeq __r(_M_stack.top(), -1);
_M_stack.pop();
_M_stack.push(__r);
return true;
}
if (_M_match_token(_ScannerT::_S_token_interval_begin))
{
if (_M_stack.empty())
__throw_regex_error(regex_constants::error_badrepeat);
if (!_M_match_token(_ScannerT::_S_token_dup_count))
__throw_regex_error(regex_constants::error_badbrace);
_StateSeq __r(_M_stack.top());
int __min_rep = _M_cur_int_value(10);
for (int __i = 1; __i < __min_rep; ++__i)
_M_stack.top()._M_append(__r._M_clone());
if (_M_match_token(_ScannerT::_S_token_comma))
if (_M_match_token(_ScannerT::_S_token_dup_count))
{
int __n = _M_cur_int_value(10) - __min_rep;
if (__n < 0)
__throw_regex_error(regex_constants::error_badbrace);
for (int __i = 0; __i < __n; ++__i)
{
_StateSeq __r(_M_state_store,
_M_state_store.
_M_insert_alt(_S_invalid_state_id,
_M_stack.top()._M_front()));
_M_stack.top()._M_append(__r);
}
}
else
{
_StateSeq __r(_M_stack.top(), -1);
__r._M_push_back(__r._M_front());
_M_stack.pop();
_M_stack.push(__r);
}
if (!_M_match_token(_ScannerT::_S_token_interval_end))
__throw_regex_error(regex_constants::error_brace);
return true;
}
return false;
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_atom()
{
typedef _CharMatcher<_InIter, _TraitsT> _CMatcher;
typedef _StartTagger<_InIter, _TraitsT> _Start;
typedef _EndTagger<_InIter, _TraitsT> _End;
if (_M_match_token(_ScannerT::_S_token_anychar))
{
_M_stack.push(_StateSeq(_M_state_store,
_M_state_store._M_insert_matcher
(_AnyMatcher)));
return true;
}
if (_M_match_token(_ScannerT::_S_token_ord_char))
{
_M_stack.push(_StateSeq(_M_state_store,
_M_state_store._M_insert_matcher
(_CMatcher(_M_cur_value[0], _M_traits))));
return true;
}
if (_M_match_token(_ScannerT::_S_token_quoted_char))
{
// note that in the ECMA grammar, this case covers backrefs.
_M_stack.push(_StateSeq(_M_state_store,
_M_state_store._M_insert_matcher
(_CMatcher(_M_cur_value[0], _M_traits))));
return true;
}
if (_M_match_token(_ScannerT::_S_token_backref))
{
// __m.push(_Matcher::_S_opcode_ordchar, _M_cur_value);
return true;
}
if (_M_match_token(_ScannerT::_S_token_subexpr_begin))
{
int __mark = _M_state_store._M_sub_count();
_StateSeq __r(_M_state_store,
_M_state_store.
_M_insert_subexpr_begin(_Start(__mark)));
this->_M_disjunction();
if (!_M_match_token(_ScannerT::_S_token_subexpr_end))
__throw_regex_error(regex_constants::error_paren);
if (!_M_stack.empty())
{
__r._M_append(_M_stack.top());
_M_stack.pop();
}
__r._M_append(_M_state_store._M_insert_subexpr_end
(__mark, _End(__mark)));
_M_stack.push(__r);
return true;
}
return _M_bracket_expression();
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_bracket_expression()
{
if (_M_match_token(_ScannerT::_S_token_bracket_begin))
{
_RMatcherT __matcher(_M_match_token(_ScannerT::_S_token_line_begin),
_M_traits);
if (!_M_bracket_list(__matcher)
|| !_M_match_token(_ScannerT::_S_token_bracket_end))
__throw_regex_error(regex_constants::error_brack);
_M_stack.push(_StateSeq(_M_state_store,
_M_state_store._M_insert_matcher(__matcher)));
return true;
}
return false;
}
// If the dash is the last character in the bracket expression, it is not
// special.
template
bool
_Compiler<_InIter, _TraitsT>::
_M_bracket_list(_RMatcherT& __matcher)
{
if (_M_follow_list(__matcher))
{
if (_M_match_token(_ScannerT::_S_token_dash))
__matcher._M_add_char(_M_cur_value[0]);
return true;
}
return false;
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_follow_list(_RMatcherT& __matcher)
{ return _M_expression_term(__matcher) && _M_follow_list2(__matcher); }
template
bool
_Compiler<_InIter, _TraitsT>::
_M_follow_list2(_RMatcherT& __matcher)
{
if (_M_expression_term(__matcher))
return _M_follow_list2(__matcher);
return true;
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_expression_term(_RMatcherT& __matcher)
{
return (_M_collating_symbol(__matcher)
|| _M_character_class(__matcher)
|| _M_equivalence_class(__matcher)
|| (_M_start_range(__matcher)
&& _M_range_expression(__matcher)));
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_range_expression(_RMatcherT& __matcher)
{
if (!_M_collating_symbol(__matcher))
if (!_M_match_token(_ScannerT::_S_token_dash))
__throw_regex_error(regex_constants::error_range);
__matcher._M_make_range();
return true;
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_start_range(_RMatcherT& __matcher)
{ return _M_match_token(_ScannerT::_S_token_dash); }
template
bool
_Compiler<_InIter, _TraitsT>::
_M_collating_symbol(_RMatcherT& __matcher)
{
if (_M_match_token(_ScannerT::_S_token_collelem_single))
{
__matcher._M_add_char(_M_cur_value[0]);
return true;
}
if (_M_match_token(_ScannerT::_S_token_collsymbol))
{
__matcher._M_add_collating_element(_M_cur_value);
return true;
}
return false;
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_equivalence_class(_RMatcherT& __matcher)
{
if (_M_match_token(_ScannerT::_S_token_equiv_class_name))
{
__matcher._M_add_equivalence_class(_M_cur_value);
return true;
}
return false;
}
template
bool
_Compiler<_InIter, _TraitsT>::
_M_character_class(_RMatcherT& __matcher)
{
if (_M_match_token(_ScannerT::_S_token_char_class_name))
{
__matcher._M_add_character_class(_M_cur_value);
return true;
}
return false;
}
template
int
_Compiler<_InIter, _TraitsT>::
_M_cur_int_value(int __radix)
{
int __v = 0;
for (typename _StringT::size_type __i = 0;
__i < _M_cur_value.length(); ++__i)
__v =__v * __radix + _M_traits.value(_M_cur_value[__i], __radix);
return __v;
}
template
_AutomatonPtr
__compile(const _InIter& __b, const _InIter& __e, _TraitsT& __t,
regex_constants::syntax_option_type __f)
{ return _AutomatonPtr(new _Nfa(_Compiler<_InIter, _TraitsT>(__b, __e, __t,
__f)._M_nfa())); }
//@} regex-detail
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
} // namespace std