------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- ADA.NUMERICS.GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2016, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Ada.Numerics.Generic_Elementary_Functions; package body Ada.Numerics.Generic_Complex_Elementary_Functions is package Elementary_Functions is new Ada.Numerics.Generic_Elementary_Functions (Real'Base); use Elementary_Functions; PI : constant := 3.14159_26535_89793_23846_26433_83279_50288_41971; PI_2 : constant := PI / 2.0; Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696; Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755; subtype T is Real'Base; Epsilon : constant T := 2.0 ** (1 - T'Model_Mantissa); Square_Root_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa); Inv_Square_Root_Epsilon : constant T := Sqrt_Two ** (T'Model_Mantissa - 1); Root_Root_Epsilon : constant T := Sqrt_Two ** ((1 - T'Model_Mantissa) / 2); Log_Inverse_Epsilon_2 : constant T := T (T'Model_Mantissa - 1) / 2.0; Complex_Zero : constant Complex := (0.0, 0.0); Complex_One : constant Complex := (1.0, 0.0); Complex_I : constant Complex := (0.0, 1.0); Half_Pi : constant Complex := (PI_2, 0.0); -------- -- ** -- -------- function "**" (Left : Complex; Right : Complex) return Complex is begin if Re (Right) = 0.0 and then Im (Right) = 0.0 and then Re (Left) = 0.0 and then Im (Left) = 0.0 then raise Argument_Error; elsif Re (Left) = 0.0 and then Im (Left) = 0.0 and then Re (Right) < 0.0 then raise Constraint_Error; elsif Re (Left) = 0.0 and then Im (Left) = 0.0 then return Left; elsif Right = (0.0, 0.0) then return Complex_One; elsif Re (Right) = 0.0 and then Im (Right) = 0.0 then return 1.0 + Right; elsif Re (Right) = 1.0 and then Im (Right) = 0.0 then return Left; else return Exp (Right * Log (Left)); end if; end "**"; function "**" (Left : Real'Base; Right : Complex) return Complex is begin if Re (Right) = 0.0 and then Im (Right) = 0.0 and then Left = 0.0 then raise Argument_Error; elsif Left = 0.0 and then Re (Right) < 0.0 then raise Constraint_Error; elsif Left = 0.0 then return Compose_From_Cartesian (Left, 0.0); elsif Re (Right) = 0.0 and then Im (Right) = 0.0 then return Complex_One; elsif Re (Right) = 1.0 and then Im (Right) = 0.0 then return Compose_From_Cartesian (Left, 0.0); else return Exp (Log (Left) * Right); end if; end "**"; function "**" (Left : Complex; Right : Real'Base) return Complex is begin if Right = 0.0 and then Re (Left) = 0.0 and then Im (Left) = 0.0 then raise Argument_Error; elsif Re (Left) = 0.0 and then Im (Left) = 0.0 and then Right < 0.0 then raise Constraint_Error; elsif Re (Left) = 0.0 and then Im (Left) = 0.0 then return Left; elsif Right = 0.0 then return Complex_One; elsif Right = 1.0 then return Left; else return Exp (Right * Log (Left)); end if; end "**"; ------------ -- Arccos -- ------------ function Arccos (X : Complex) return Complex is Result : Complex; begin if X = Complex_One then return Complex_Zero; elsif abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return Half_Pi - X; elsif abs Re (X) > Inv_Square_Root_Epsilon or else abs Im (X) > Inv_Square_Root_Epsilon then return -2.0 * Complex_I * Log (Sqrt ((1.0 + X) / 2.0) + Complex_I * Sqrt ((1.0 - X) / 2.0)); end if; Result := -Complex_I * Log (X + Complex_I * Sqrt (1.0 - X * X)); if Im (X) = 0.0 and then abs Re (X) <= 1.00 then Set_Im (Result, Im (X)); end if; return Result; end Arccos; ------------- -- Arccosh -- ------------- function Arccosh (X : Complex) return Complex is Result : Complex; begin if X = Complex_One then return Complex_Zero; elsif abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then Result := Compose_From_Cartesian (-Im (X), -PI_2 + Re (X)); elsif abs Re (X) > Inv_Square_Root_Epsilon or else abs Im (X) > Inv_Square_Root_Epsilon then Result := Log_Two + Log (X); else Result := 2.0 * Log (Sqrt ((1.0 + X) / 2.0) + Sqrt ((X - 1.0) / 2.0)); end if; if Re (Result) <= 0.0 then Result := -Result; end if; return Result; end Arccosh; ------------ -- Arccot -- ------------ function Arccot (X : Complex) return Complex is Xt : Complex; begin if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return Half_Pi - X; elsif abs Re (X) > 1.0 / Epsilon or else abs Im (X) > 1.0 / Epsilon then Xt := Complex_One / X; if Re (X) < 0.0 then Set_Re (Xt, PI - Re (Xt)); return Xt; else return Xt; end if; end if; Xt := Complex_I * Log ((X - Complex_I) / (X + Complex_I)) / 2.0; if Re (Xt) < 0.0 then Xt := PI + Xt; end if; return Xt; end Arccot; -------------- -- Arccoth -- -------------- function Arccoth (X : Complex) return Complex is R : Complex; begin if X = (0.0, 0.0) then return Compose_From_Cartesian (0.0, PI_2); elsif abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return PI_2 * Complex_I + X; elsif abs Re (X) > 1.0 / Epsilon or else abs Im (X) > 1.0 / Epsilon then if Im (X) > 0.0 then return (0.0, 0.0); else return PI * Complex_I; end if; elsif Im (X) = 0.0 and then Re (X) = 1.0 then raise Constraint_Error; elsif Im (X) = 0.0 and then Re (X) = -1.0 then raise Constraint_Error; end if; begin R := Log ((1.0 + X) / (X - 1.0)) / 2.0; exception when Constraint_Error => R := (Log (1.0 + X) - Log (X - 1.0)) / 2.0; end; if Im (R) < 0.0 then Set_Im (R, PI + Im (R)); end if; if Re (X) = 0.0 then Set_Re (R, Re (X)); end if; return R; end Arccoth; ------------ -- Arcsin -- ------------ function Arcsin (X : Complex) return Complex is Result : Complex; begin -- For very small argument, sin (x) = x if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return X; elsif abs Re (X) > Inv_Square_Root_Epsilon or else abs Im (X) > Inv_Square_Root_Epsilon then Result := -Complex_I * (Log (Complex_I * X) + Log (2.0 * Complex_I)); if Im (Result) > PI_2 then Set_Im (Result, PI - Im (X)); elsif Im (Result) < -PI_2 then Set_Im (Result, -(PI + Im (X))); end if; return Result; end if; Result := -Complex_I * Log (Complex_I * X + Sqrt (1.0 - X * X)); if Re (X) = 0.0 then Set_Re (Result, Re (X)); elsif Im (X) = 0.0 and then abs Re (X) <= 1.00 then Set_Im (Result, Im (X)); end if; return Result; end Arcsin; ------------- -- Arcsinh -- ------------- function Arcsinh (X : Complex) return Complex is Result : Complex; begin if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return X; elsif abs Re (X) > Inv_Square_Root_Epsilon or else abs Im (X) > Inv_Square_Root_Epsilon then Result := Log_Two + Log (X); -- may have wrong sign if (Re (X) < 0.0 and then Re (Result) > 0.0) or else (Re (X) > 0.0 and then Re (Result) < 0.0) then Set_Re (Result, -Re (Result)); end if; return Result; end if; Result := Log (X + Sqrt (1.0 + X * X)); if Re (X) = 0.0 then Set_Re (Result, Re (X)); elsif Im (X) = 0.0 then Set_Im (Result, Im (X)); end if; return Result; end Arcsinh; ------------ -- Arctan -- ------------ function Arctan (X : Complex) return Complex is begin if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return X; else return -Complex_I * (Log (1.0 + Complex_I * X) - Log (1.0 - Complex_I * X)) / 2.0; end if; end Arctan; ------------- -- Arctanh -- ------------- function Arctanh (X : Complex) return Complex is begin if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return X; else return (Log (1.0 + X) - Log (1.0 - X)) / 2.0; end if; end Arctanh; --------- -- Cos -- --------- function Cos (X : Complex) return Complex is begin return Compose_From_Cartesian (Cos (Re (X)) * Cosh (Im (X)), -(Sin (Re (X)) * Sinh (Im (X)))); end Cos; ---------- -- Cosh -- ---------- function Cosh (X : Complex) return Complex is begin return Compose_From_Cartesian (Cosh (Re (X)) * Cos (Im (X)), Sinh (Re (X)) * Sin (Im (X))); end Cosh; --------- -- Cot -- --------- function Cot (X : Complex) return Complex is begin if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return Complex_One / X; elsif Im (X) > Log_Inverse_Epsilon_2 then return -Complex_I; elsif Im (X) < -Log_Inverse_Epsilon_2 then return Complex_I; end if; return Cos (X) / Sin (X); end Cot; ---------- -- Coth -- ---------- function Coth (X : Complex) return Complex is begin if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return Complex_One / X; elsif Re (X) > Log_Inverse_Epsilon_2 then return Complex_One; elsif Re (X) < -Log_Inverse_Epsilon_2 then return -Complex_One; else return Cosh (X) / Sinh (X); end if; end Coth; --------- -- Exp -- --------- function Exp (X : Complex) return Complex is EXP_RE_X : constant Real'Base := Exp (Re (X)); begin return Compose_From_Cartesian (EXP_RE_X * Cos (Im (X)), EXP_RE_X * Sin (Im (X))); end Exp; function Exp (X : Imaginary) return Complex is ImX : constant Real'Base := Im (X); begin return Compose_From_Cartesian (Cos (ImX), Sin (ImX)); end Exp; --------- -- Log -- --------- function Log (X : Complex) return Complex is ReX : Real'Base; ImX : Real'Base; Z : Complex; begin if Re (X) = 0.0 and then Im (X) = 0.0 then raise Constraint_Error; elsif abs (1.0 - Re (X)) < Root_Root_Epsilon and then abs Im (X) < Root_Root_Epsilon then Z := X; Set_Re (Z, Re (Z) - 1.0); return (1.0 - (1.0 / 2.0 - (1.0 / 3.0 - (1.0 / 4.0) * Z) * Z) * Z) * Z; end if; begin ReX := Log (Modulus (X)); exception when Constraint_Error => ReX := Log (Modulus (X / 2.0)) - Log_Two; end; ImX := Arctan (Im (X), Re (X)); if ImX > PI then ImX := ImX - 2.0 * PI; end if; return Compose_From_Cartesian (ReX, ImX); end Log; --------- -- Sin -- --------- function Sin (X : Complex) return Complex is begin if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return X; end if; return Compose_From_Cartesian (Sin (Re (X)) * Cosh (Im (X)), Cos (Re (X)) * Sinh (Im (X))); end Sin; ---------- -- Sinh -- ---------- function Sinh (X : Complex) return Complex is begin if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return X; else return Compose_From_Cartesian (Sinh (Re (X)) * Cos (Im (X)), Cosh (Re (X)) * Sin (Im (X))); end if; end Sinh; ---------- -- Sqrt -- ---------- function Sqrt (X : Complex) return Complex is ReX : constant Real'Base := Re (X); ImX : constant Real'Base := Im (X); XR : constant Real'Base := abs Re (X); YR : constant Real'Base := abs Im (X); R : Real'Base; R_X : Real'Base; R_Y : Real'Base; begin -- Deal with pure real case, see (RM G.1.2(39)) if ImX = 0.0 then if ReX > 0.0 then return Compose_From_Cartesian (Sqrt (ReX), 0.0); elsif ReX = 0.0 then return X; else return Compose_From_Cartesian (0.0, Real'Copy_Sign (Sqrt (-ReX), ImX)); end if; elsif ReX = 0.0 then R_X := Sqrt (YR / 2.0); if ImX > 0.0 then return Compose_From_Cartesian (R_X, R_X); else return Compose_From_Cartesian (R_X, -R_X); end if; else R := Sqrt (XR ** 2 + YR ** 2); -- If the square of the modulus overflows, try rescaling the -- real and imaginary parts. We cannot depend on an exception -- being raised on all targets. if R > Real'Base'Last then raise Constraint_Error; end if; -- We are solving the system -- XR = R_X ** 2 - Y_R ** 2 (1) -- YR = 2.0 * R_X * R_Y (2) -- -- The symmetric solution involves square roots for both R_X and -- R_Y, but it is more accurate to use the square root with the -- larger argument for either R_X or R_Y, and equation (2) for the -- other. if ReX < 0.0 then R_Y := Sqrt (0.5 * (R - ReX)); R_X := YR / (2.0 * R_Y); else R_X := Sqrt (0.5 * (R + ReX)); R_Y := YR / (2.0 * R_X); end if; end if; if Im (X) < 0.0 then -- halve angle, Sqrt of magnitude R_Y := -R_Y; end if; return Compose_From_Cartesian (R_X, R_Y); exception when Constraint_Error => -- Rescale and try again R := Modulus (Compose_From_Cartesian (Re (X / 4.0), Im (X / 4.0))); R_X := 2.0 * Sqrt (0.5 * R + 0.5 * Re (X / 4.0)); R_Y := 2.0 * Sqrt (0.5 * R - 0.5 * Re (X / 4.0)); if Im (X) < 0.0 then -- halve angle, Sqrt of magnitude R_Y := -R_Y; end if; return Compose_From_Cartesian (R_X, R_Y); end Sqrt; --------- -- Tan -- --------- function Tan (X : Complex) return Complex is begin if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return X; elsif Im (X) > Log_Inverse_Epsilon_2 then return Complex_I; elsif Im (X) < -Log_Inverse_Epsilon_2 then return -Complex_I; else return Sin (X) / Cos (X); end if; end Tan; ---------- -- Tanh -- ---------- function Tanh (X : Complex) return Complex is begin if abs Re (X) < Square_Root_Epsilon and then abs Im (X) < Square_Root_Epsilon then return X; elsif Re (X) > Log_Inverse_Epsilon_2 then return Complex_One; elsif Re (X) < -Log_Inverse_Epsilon_2 then return -Complex_One; else return Sinh (X) / Cosh (X); end if; end Tanh; end Ada.Numerics.Generic_Complex_Elementary_Functions;