/* Implementations of operations between mpfr and mpz/mpq data Copyright 2001, 2003-2023 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* TODO: for functions with mpz_srcptr, check whether mpz_fits_slong_p is really useful in all cases. For instance, concerning the addition, one now has mpz_t -> long -> unsigned long -> mpfr_t then mpfr_add instead of mpz_t -> mpfr_t then mpfr_add. */ /* Init and set a mpfr_t with enough precision to store a mpz. This function should be called in the extended exponent range. */ static void init_set_z (mpfr_ptr t, mpz_srcptr z) { mpfr_prec_t p; int i; if (mpz_size (z) <= 1) p = GMP_NUMB_BITS; else MPFR_MPZ_SIZEINBASE2 (p, z); mpfr_init2 (t, p); i = mpfr_set_z (t, z, MPFR_RNDN); /* Possible assertion failure in case of overflow. Such cases, which imply that z is huge (if the function is called in the extended exponent range), are currently not supported, just like precisions around MPFR_PREC_MAX. */ MPFR_ASSERTN (i == 0); (void) i; /* use i to avoid a warning */ } /* Init, set a mpfr_t with enough precision to store a mpz_t without round, call the function, and clear the allocated mpfr_t */ static int foo (mpfr_ptr x, mpfr_srcptr y, mpz_srcptr z, mpfr_rnd_t r, int (*f)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t)) { mpfr_t t; int i; MPFR_SAVE_EXPO_DECL (expo); MPFR_SAVE_EXPO_MARK (expo); init_set_z (t, z); /* There should be no exceptions. */ i = (*f) (x, y, t, r); MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags); mpfr_clear (t); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (x, i, r); } static int foo2 (mpfr_ptr x, mpz_srcptr y, mpfr_srcptr z, mpfr_rnd_t r, int (*f)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t)) { mpfr_t t; int i; MPFR_SAVE_EXPO_DECL (expo); MPFR_SAVE_EXPO_MARK (expo); init_set_z (t, y); /* There should be no exceptions. */ i = (*f) (x, t, z, r); MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags); mpfr_clear (t); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (x, i, r); } int mpfr_mul_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr z, mpfr_rnd_t r) { if (mpz_fits_slong_p (z)) return mpfr_mul_si (y, x, mpz_get_si (z), r); else return foo (y, x, z, r, mpfr_mul); } int mpfr_div_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr z, mpfr_rnd_t r) { if (mpz_fits_slong_p (z)) return mpfr_div_si (y, x, mpz_get_si (z), r); else return foo (y, x, z, r, mpfr_div); } int mpfr_add_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr z, mpfr_rnd_t r) { if (mpz_fits_slong_p (z)) return mpfr_add_si (y, x, mpz_get_si (z), r); else return foo (y, x, z, r, mpfr_add); } int mpfr_sub_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr z, mpfr_rnd_t r) { if (mpz_fits_slong_p (z)) return mpfr_sub_si (y, x, mpz_get_si (z), r); else return foo (y, x, z, r, mpfr_sub); } int mpfr_z_sub (mpfr_ptr y, mpz_srcptr x, mpfr_srcptr z, mpfr_rnd_t r) { if (mpz_fits_slong_p (x)) return mpfr_si_sub (y, mpz_get_si (x), z, r); else return foo2 (y, x, z, r, mpfr_sub); } int mpfr_cmp_z (mpfr_srcptr x, mpz_srcptr z) { mpfr_t t; int res; mpfr_prec_t p; mpfr_flags_t flags; if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) return mpfr_cmp_si (x, mpz_sgn (z)); if (mpz_fits_slong_p (z)) return mpfr_cmp_si (x, mpz_get_si (z)); if (mpz_size (z) <= 1) p = GMP_NUMB_BITS; else MPFR_MPZ_SIZEINBASE2 (p, z); mpfr_init2 (t, p); flags = __gmpfr_flags; if (mpfr_set_z (t, z, MPFR_RNDN)) { /* overflow (t is an infinity) or underflow: z does not fit in the current exponent range. If overflow, then z is larger than the largest *integer* < +Inf (if z > 0), thus we get t = +Inf (or -Inf), and the value of mpfr_cmp (x, t) below is correct. If underflow, then z is smaller than the smallest number > 0, which is necessarily an integer, say xmin. If z > xmin/2, then t is xmin, and we divide t by 2 to ensure t is zero, and then the value of mpfr_cmp (x, t) below is correct. */ mpfr_div_2ui (t, t, 2, MPFR_RNDZ); /* if underflow, set t to zero */ __gmpfr_flags = flags; /* restore the flags */ /* The real value of t (= z), which falls outside the exponent range, has been replaced by an equivalent value for the comparison: zero or an infinity. */ } res = mpfr_cmp (x, t); mpfr_clear (t); return res; } #ifndef MPFR_USE_MINI_GMP /* Compute y = RND(x*n/d), where n and d are mpz integers. An integer 0 is assumed to have a positive sign. This function is used by mpfr_mul_q and mpfr_div_q. Note: the status of the rational 0/(-1) is not clear (if there is a signed infinity, there should be a signed zero). But infinities are not currently supported/documented in GMP, and if the rational is canonicalized as it should be, the case 0/(-1) cannot occur. */ static int mpfr_muldiv_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr n, mpz_srcptr d, mpfr_rnd_t rnd_mode) { if (MPFR_UNLIKELY (mpz_sgn (n) == 0)) { if (MPFR_UNLIKELY (mpz_sgn (d) == 0)) MPFR_SET_NAN (y); else { mpfr_mul_ui (y, x, 0, MPFR_RNDN); /* exact: +0, -0 or NaN */ if (MPFR_UNLIKELY (mpz_sgn (d) < 0)) MPFR_CHANGE_SIGN (y); } return 0; } else if (MPFR_UNLIKELY (mpz_sgn (d) == 0)) { mpfr_div_ui (y, x, 0, MPFR_RNDN); /* exact: +Inf, -Inf or NaN */ if (MPFR_UNLIKELY (mpz_sgn (n) < 0)) MPFR_CHANGE_SIGN (y); return 0; } else { mpfr_prec_t p; mpfr_t tmp; int inexact; MPFR_SAVE_EXPO_DECL (expo); MPFR_SAVE_EXPO_MARK (expo); /* With the current MPFR code, using mpfr_mul_z and mpfr_div_z for the general case should be faster than doing everything in mpn, mpz and/or mpq. MPFR_SAVE_EXPO_MARK could be avoided here, but it would be more difficult to handle corner cases. */ MPFR_MPZ_SIZEINBASE2 (p, n); mpfr_init2 (tmp, MPFR_PREC (x) + p); inexact = mpfr_mul_z (tmp, x, n, MPFR_RNDN); /* Since |n| >= 1, an underflow is not possible. And the precision of tmp has been chosen so that inexact != 0 iff there's an overflow. */ if (MPFR_UNLIKELY (inexact != 0)) { mpfr_t x0; mpfr_exp_t ex; MPFR_BLOCK_DECL (flags); /* intermediate overflow case */ MPFR_ASSERTD (mpfr_inf_p (tmp)); ex = MPFR_GET_EXP (x); /* x is a pure FP number */ MPFR_ALIAS (x0, x, MPFR_SIGN(x), 0); /* x0 = x / 2^ex */ MPFR_BLOCK (flags, inexact = mpfr_mul_z (tmp, x0, n, MPFR_RNDN); MPFR_ASSERTD (inexact == 0); inexact = mpfr_div_z (y, tmp, d, rnd_mode); /* Just in case the division underflows (highly unlikely, not supported)... */ MPFR_ASSERTN (!MPFR_BLOCK_EXCEP)); MPFR_EXP (y) += ex; /* Detect highly unlikely, not supported corner cases... */ MPFR_ASSERTN (MPFR_EXP (y) >= __gmpfr_emin); MPFR_ASSERTN (! MPFR_IS_SINGULAR (y)); /* The potential overflow will be detected by mpfr_check_range. */ } else inexact = mpfr_div_z (y, tmp, d, rnd_mode); mpfr_clear (tmp); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } } int mpfr_mul_q (mpfr_ptr y, mpfr_srcptr x, mpq_srcptr z, mpfr_rnd_t rnd_mode) { return mpfr_muldiv_z (y, x, mpq_numref (z), mpq_denref (z), rnd_mode); } int mpfr_div_q (mpfr_ptr y, mpfr_srcptr x, mpq_srcptr z, mpfr_rnd_t rnd_mode) { return mpfr_muldiv_z (y, x, mpq_denref (z), mpq_numref (z), rnd_mode); } int mpfr_add_q (mpfr_ptr y, mpfr_srcptr x, mpq_srcptr z, mpfr_rnd_t rnd_mode) { mpfr_t t,q; mpfr_prec_t p; mpfr_exp_t err; int res; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { if (MPFR_UNLIKELY (mpz_sgn (mpq_denref (z)) == 0 && MPFR_MULT_SIGN (mpz_sgn (mpq_numref (z)), MPFR_SIGN (x)) <= 0)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } MPFR_SET_INF (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } else { MPFR_ASSERTD (MPFR_IS_ZERO (x)); if (MPFR_UNLIKELY (mpq_sgn (z) == 0)) return mpfr_set (y, x, rnd_mode); /* signed 0 - Unsigned 0 */ else return mpfr_set_q (y, z, rnd_mode); } } MPFR_SAVE_EXPO_MARK (expo); p = MPFR_PREC (y) + 10; mpfr_init2 (t, p); mpfr_init2 (q, p); MPFR_ZIV_INIT (loop, p); for (;;) { MPFR_BLOCK_DECL (flags); res = mpfr_set_q (q, z, MPFR_RNDN); /* Error <= 1/2 ulp(q) */ /* If z if @INF@ (1/0), res = 0, so it quits immediately */ if (MPFR_UNLIKELY (res == 0)) /* Result is exact so we can add it directly! */ { res = mpfr_add (y, x, q, rnd_mode); break; } MPFR_BLOCK (flags, mpfr_add (t, x, q, MPFR_RNDN)); /* Error on t is <= 1/2 ulp(t), except in case of overflow/underflow, but such an exception is very unlikely as it would be possible only if q has a huge numerator or denominator. Not supported! */ MPFR_ASSERTN (! (MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags))); /* Error / ulp(t) <= 1/2 + 1/2 * 2^(EXP(q)-EXP(t)) If EXP(q)-EXP(t)>0, <= 2^(EXP(q)-EXP(t)-1)*(1+2^-(EXP(q)-EXP(t))) <= 2^(EXP(q)-EXP(t)) If EXP(q)-EXP(t)<0, <= 2^0 */ /* We can get 0, but we can't round since q is inexact */ if (MPFR_LIKELY (!MPFR_IS_ZERO (t))) { err = (mpfr_exp_t) p - 1 - MAX (MPFR_GET_EXP(q)-MPFR_GET_EXP(t), 0); if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y), rnd_mode))) { res = mpfr_set (y, t, rnd_mode); break; } } MPFR_ZIV_NEXT (loop, p); mpfr_set_prec (t, p); mpfr_set_prec (q, p); } MPFR_ZIV_FREE (loop); mpfr_clear (t); mpfr_clear (q); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, res, rnd_mode); } int mpfr_sub_q (mpfr_ptr y, mpfr_srcptr x, mpq_srcptr z,mpfr_rnd_t rnd_mode) { mpfr_t t,q; mpfr_prec_t p; int res; mpfr_exp_t err; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { if (MPFR_UNLIKELY (mpz_sgn (mpq_denref (z)) == 0 && MPFR_MULT_SIGN (mpz_sgn (mpq_numref (z)), MPFR_SIGN (x)) >= 0)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } MPFR_SET_INF (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } else { MPFR_ASSERTD (MPFR_IS_ZERO (x)); if (MPFR_UNLIKELY (mpq_sgn (z) == 0)) return mpfr_set (y, x, rnd_mode); /* signed 0 - Unsigned 0 */ else { res = mpfr_set_q (y, z, MPFR_INVERT_RND (rnd_mode)); MPFR_CHANGE_SIGN (y); return -res; } } } MPFR_SAVE_EXPO_MARK (expo); p = MPFR_PREC (y) + 10; mpfr_init2 (t, p); mpfr_init2 (q, p); MPFR_ZIV_INIT (loop, p); for(;;) { MPFR_BLOCK_DECL (flags); res = mpfr_set_q(q, z, MPFR_RNDN); /* Error <= 1/2 ulp(q) */ /* If z if @INF@ (1/0), res = 0, so it quits immediately */ if (MPFR_UNLIKELY (res == 0)) /* Result is exact so we can add it directly!*/ { res = mpfr_sub (y, x, q, rnd_mode); break; } MPFR_BLOCK (flags, mpfr_sub (t, x, q, MPFR_RNDN)); /* Error on t is <= 1/2 ulp(t), except in case of overflow/underflow, but such an exception is very unlikely as it would be possible only if q has a huge numerator or denominator. Not supported! */ MPFR_ASSERTN (! (MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags))); /* Error / ulp(t) <= 1/2 + 1/2 * 2^(EXP(q)-EXP(t)) If EXP(q)-EXP(t)>0, <= 2^(EXP(q)-EXP(t)-1)*(1+2^-(EXP(q)-EXP(t))) <= 2^(EXP(q)-EXP(t)) If EXP(q)-EXP(t)<0, <= 2^0 */ /* We can get 0, but we can't round since q is inexact */ if (MPFR_LIKELY (!MPFR_IS_ZERO (t))) { err = (mpfr_exp_t) p - 1 - MAX (MPFR_GET_EXP(q)-MPFR_GET_EXP(t), 0); res = MPFR_CAN_ROUND (t, err, MPFR_PREC (y), rnd_mode); if (MPFR_LIKELY (res != 0)) /* We can round! */ { res = mpfr_set (y, t, rnd_mode); break; } } MPFR_ZIV_NEXT (loop, p); mpfr_set_prec (t, p); mpfr_set_prec (q, p); } MPFR_ZIV_FREE (loop); mpfr_clear (t); mpfr_clear (q); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, res, rnd_mode); } int mpfr_cmp_q (mpfr_srcptr x, mpq_srcptr q) { mpfr_t t; int res; mpfr_prec_t p; MPFR_SAVE_EXPO_DECL (expo); /* GMP allows the user to set the denominator to 0. This is interpreted by MPFR as the value being an infinity or NaN (probably better than an assertion failure). */ if (MPFR_UNLIKELY (mpz_sgn (mpq_denref (q)) == 0)) { /* q is an infinity or NaN */ mpfr_flags_t old_flags; mpfr_init2 (t, MPFR_PREC_MIN); old_flags = __gmpfr_flags; mpfr_set_q (t, q, MPFR_RNDN); __gmpfr_flags = old_flags; res = mpfr_cmp (x, t); mpfr_clear (t); return res; } if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) return mpfr_cmp_si (x, mpq_sgn (q)); MPFR_SAVE_EXPO_MARK (expo); /* x < a/b ? <=> x*b < a */ MPFR_MPZ_SIZEINBASE2 (p, mpq_denref (q)); mpfr_init2 (t, MPFR_PREC(x) + p); res = mpfr_mul_z (t, x, mpq_denref (q), MPFR_RNDN); MPFR_ASSERTD (res == 0); res = mpfr_cmp_z (t, mpq_numref (q)); mpfr_clear (t); MPFR_SAVE_EXPO_FREE (expo); return res; } #endif #ifndef MPFR_USE_MINI_GMP int mpfr_cmp_f (mpfr_srcptr x, mpf_srcptr z) { mpfr_t t; int res; MPFR_SAVE_EXPO_DECL (expo); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) return mpfr_cmp_si (x, mpf_sgn (z)); MPFR_SAVE_EXPO_MARK (expo); mpfr_init2 (t, MPFR_PREC_MIN + ABSIZ(z) * GMP_NUMB_BITS); res = mpfr_set_f (t, z, MPFR_RNDN); MPFR_ASSERTD (res == 0); res = mpfr_cmp (x, t); mpfr_clear (t); MPFR_SAVE_EXPO_FREE (expo); return res; } #endif