/*---------------------------------------------------------------------------+ | poly_tan.c | | | | Compute the tan of a FPU_REG, using a polynomial approximation. | | | | Copyright (C) 1992,1993 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, | | Australia. E-mail billm@vaxc.cc.monash.edu.au | | | | | +---------------------------------------------------------------------------*/ #include "exception.h" #include "reg_constant.h" #include "fpu_emu.h" #include "control_w.h" #define HIPOWERop 3 /* odd poly, positive terms */ static unsigned short const oddplterms[HIPOWERop][4] = { { 0x846a, 0x42d1, 0xb544, 0x921f}, { 0x6fb2, 0x0215, 0x95c0, 0x099c}, { 0xfce6, 0x0cc8, 0x1c9a, 0x0000} }; #define HIPOWERon 2 /* odd poly, negative terms */ static unsigned short const oddnegterms[HIPOWERon][4] = { { 0x6906, 0xe205, 0x25c8, 0x8838}, { 0x1dd7, 0x3fe3, 0x944e, 0x002c} }; #define HIPOWERep 2 /* even poly, positive terms */ static unsigned short const evenplterms[HIPOWERep][4] = { { 0xdb8f, 0x3761, 0x1432, 0x2acf}, { 0x16eb, 0x13c1, 0x3099, 0x0003} }; #define HIPOWERen 2 /* even poly, negative terms */ static unsigned short const evennegterms[HIPOWERen][4] = { { 0x3a7c, 0xe4c5, 0x7f87, 0x2945}, { 0x572b, 0x664c, 0xc543, 0x018c} }; /*--- poly_tan() ------------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_tan(FPU_REG const *arg, FPU_REG *result, int invert) { short exponent; FPU_REG odd_poly, even_poly, pos_poly, neg_poly; FPU_REG argSq; unsigned long long arg_signif, argSqSq; exponent = arg->exp - EXP_BIAS; #ifdef PARANOID if ( arg->sign != 0 ) /* Can't hack a number < 0.0 */ { arith_invalid(result); return; } /* Need a positive number */ #endif PARANOID arg_signif = significand(arg); if ( exponent < -1 ) { /* shift the argument right by the required places */ if ( shrx(&arg_signif, -1-exponent) >= 0x80000000U ) arg_signif++; /* round up */ } mul64(&arg_signif, &arg_signif, &significand(&argSq)); mul64(&significand(&argSq), &significand(&argSq), &argSqSq); /* will be a valid positive nr with expon = 0 */ *(short *)&(pos_poly.sign) = 0; pos_poly.exp = EXP_BIAS; /* Do the basic fixed point polynomial evaluation */ polynomial(&pos_poly.sigl, (unsigned *)&argSqSq, oddplterms, HIPOWERop-1); /* will be a valid positive nr with expon = 0 */ *(short *)&(neg_poly.sign) = 0; neg_poly.exp = EXP_BIAS; /* Do the basic fixed point polynomial evaluation */ polynomial(&neg_poly.sigl, (unsigned *)&argSqSq, oddnegterms, HIPOWERon-1); mul64(&significand(&argSq), &significand(&neg_poly), &significand(&neg_poly)); /* Subtract the mantissas */ significand(&pos_poly) -= significand(&neg_poly); /* Convert to 64 bit signed-compatible */ pos_poly.exp -= 1; reg_move(&pos_poly, &odd_poly); normalize(&odd_poly); reg_mul(&odd_poly, arg, &odd_poly, FULL_PRECISION); /* Complete the odd polynomial. */ reg_u_add(&odd_poly, arg, &odd_poly, FULL_PRECISION); /* will be a valid positive nr with expon = 0 */ *(short *)&(pos_poly.sign) = 0; pos_poly.exp = EXP_BIAS; /* Do the basic fixed point polynomial evaluation */ polynomial(&pos_poly.sigl, (unsigned *)&argSqSq, evenplterms, HIPOWERep-1); mul64(&significand(&argSq), &significand(&pos_poly), &significand(&pos_poly)); /* will be a valid positive nr with expon = 0 */ *(short *)&(neg_poly.sign) = 0; neg_poly.exp = EXP_BIAS; /* Do the basic fixed point polynomial evaluation */ polynomial(&neg_poly.sigl, (unsigned *)&argSqSq, evennegterms, HIPOWERen-1); /* Subtract the mantissas */ significand(&neg_poly) -= significand(&pos_poly); /* and multiply by argSq */ /* Convert argSq to a valid reg number */ *(short *)&(argSq.sign) = 0; argSq.exp = EXP_BIAS - 1; normalize(&argSq); /* Convert to 64 bit signed-compatible */ neg_poly.exp -= 1; reg_move(&neg_poly, &even_poly); normalize(&even_poly); reg_mul(&even_poly, &argSq, &even_poly, FULL_PRECISION); reg_add(&even_poly, &argSq, &even_poly, FULL_PRECISION); /* Complete the even polynomial */ reg_sub(&CONST_1, &even_poly, &even_poly, FULL_PRECISION); /* Now ready to copy the results */ if ( invert ) { reg_div(&even_poly, &odd_poly, result, FULL_PRECISION); } else { reg_div(&odd_poly, &even_poly, result, FULL_PRECISION); } }