/* * * * Copyright (c) 1994 * Hewlett-Packard Company * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Copyright (c) 1997 * Moscow Center for SPARC Technology * * Copyright (c) 1999 * Boris Fomitchev * * This material is provided "as is", with absolutely no warranty expressed * or implied. Any use is at your own risk. * * Permission to use or copy this software for any purpose is hereby granted * without fee, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * */ #ifndef __STL_TREE_C #define __STL_TREE_C // fbp: these defines are for outline methods definitions. // needed for definitions to be portable. Should not be used in method bodies. # if defined ( __STL_NESTED_TYPE_PARAM_BUG ) # define __iterator__ _Rb_tree_iterator<_Value, _Nonconst_traits<_Value> > # define __const_iterator__ _Rb_tree_iterator<_Value, _Const_traits<_Value> > # define __size_type__ size_t # else # define __iterator__ __STL_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>::iterator # define __const_iterator__ __STL_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>::const_iterator # define __size_type__ __STL_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>::size_type # endif #if defined ( __STL_DEBUG) # define _Rb_tree __WORKAROUND_DBG_RENAME(Rb_tree) #endif __STL_BEGIN_NAMESPACE inline void _Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root) { _Rb_tree_node_base* __y = __x->_M_right; __x->_M_right = __y->_M_left; if (__y->_M_left !=0) __y->_M_left->_M_parent = __x; __y->_M_parent = __x->_M_parent; if (__x == __root) __root = __y; else if (__x == __x->_M_parent->_M_left) __x->_M_parent->_M_left = __y; else __x->_M_parent->_M_right = __y; __y->_M_left = __x; __x->_M_parent = __y; } inline void _Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root) { _Rb_tree_node_base* __y = __x->_M_left; __x->_M_left = __y->_M_right; if (__y->_M_right != 0) __y->_M_right->_M_parent = __x; __y->_M_parent = __x->_M_parent; if (__x == __root) __root = __y; else if (__x == __x->_M_parent->_M_right) __x->_M_parent->_M_right = __y; else __x->_M_parent->_M_left = __y; __y->_M_right = __x; __x->_M_parent = __y; } template void _Rb_global<_Dummy>::_Rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root) { __x->_M_color = _S_rb_tree_red; while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) { if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) { _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right; if (__y && __y->_M_color == _S_rb_tree_red) { __x->_M_parent->_M_color = _S_rb_tree_black; __y->_M_color = _S_rb_tree_black; __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; __x = __x->_M_parent->_M_parent; } else { if (__x == __x->_M_parent->_M_right) { __x = __x->_M_parent; _Rb_tree_rotate_left(__x, __root); } __x->_M_parent->_M_color = _S_rb_tree_black; __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; _Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root); } } else { _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left; if (__y && __y->_M_color == _S_rb_tree_red) { __x->_M_parent->_M_color = _S_rb_tree_black; __y->_M_color = _S_rb_tree_black; __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; __x = __x->_M_parent->_M_parent; } else { if (__x == __x->_M_parent->_M_left) { __x = __x->_M_parent; _Rb_tree_rotate_right(__x, __root); } __x->_M_parent->_M_color = _S_rb_tree_black; __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; _Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root); } } } __root->_M_color = _S_rb_tree_black; } template _Rb_tree_node_base* _Rb_global<_Dummy>::_Rebalance_for_erase(_Rb_tree_node_base* __z, _Rb_tree_node_base*& __root, _Rb_tree_node_base*& __leftmost, _Rb_tree_node_base*& __rightmost) { _Rb_tree_node_base* __y = __z; _Rb_tree_node_base* __x = 0; _Rb_tree_node_base* __x_parent = 0; if (__y->_M_left == 0) // __z has at most one non-null child. y == z. __x = __y->_M_right; // __x might be null. else if (__y->_M_right == 0) // __z has exactly one non-null child. y == z. __x = __y->_M_left; // __x is not null. else { // __z has two non-null children. Set __y to __y = __y->_M_right; // __z's successor. __x might be null. while (__y->_M_left != 0) __y = __y->_M_left; __x = __y->_M_right; } if (__y != __z) { // relink y in place of z. y is z's successor __z->_M_left->_M_parent = __y; __y->_M_left = __z->_M_left; if (__y != __z->_M_right) { __x_parent = __y->_M_parent; if (__x) __x->_M_parent = __y->_M_parent; __y->_M_parent->_M_left = __x; // __y must be a child of _M_left __y->_M_right = __z->_M_right; __z->_M_right->_M_parent = __y; } else __x_parent = __y; if (__root == __z) __root = __y; else if (__z->_M_parent->_M_left == __z) __z->_M_parent->_M_left = __y; else __z->_M_parent->_M_right = __y; __y->_M_parent = __z->_M_parent; __STLPORT_STD::swap(__y->_M_color, __z->_M_color); __y = __z; // __y now points to node to be actually deleted } else { // __y == __z __x_parent = __y->_M_parent; if (__x) __x->_M_parent = __y->_M_parent; if (__root == __z) __root = __x; else if (__z->_M_parent->_M_left == __z) __z->_M_parent->_M_left = __x; else __z->_M_parent->_M_right = __x; if (__leftmost == __z) if (__z->_M_right == 0) // __z->_M_left must be null also __leftmost = __z->_M_parent; // makes __leftmost == _M_header if __z == __root else __leftmost = _Rb_tree_node_base::_S_minimum(__x); if (__rightmost == __z) if (__z->_M_left == 0) // __z->_M_right must be null also __rightmost = __z->_M_parent; // makes __rightmost == _M_header if __z == __root else // __x == __z->_M_left __rightmost = _Rb_tree_node_base::_S_maximum(__x); } if (__y->_M_color != _S_rb_tree_red) { while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black)) if (__x == __x_parent->_M_left) { _Rb_tree_node_base* __w = __x_parent->_M_right; if (__w->_M_color == _S_rb_tree_red) { __w->_M_color = _S_rb_tree_black; __x_parent->_M_color = _S_rb_tree_red; _Rb_tree_rotate_left(__x_parent, __root); __w = __x_parent->_M_right; } if ((__w->_M_left == 0 || __w->_M_left->_M_color == _S_rb_tree_black) && (__w->_M_right == 0 || __w->_M_right->_M_color == _S_rb_tree_black)) { __w->_M_color = _S_rb_tree_red; __x = __x_parent; __x_parent = __x_parent->_M_parent; } else { if (__w->_M_right == 0 || __w->_M_right->_M_color == _S_rb_tree_black) { if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black; __w->_M_color = _S_rb_tree_red; _Rb_tree_rotate_right(__w, __root); __w = __x_parent->_M_right; } __w->_M_color = __x_parent->_M_color; __x_parent->_M_color = _S_rb_tree_black; if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black; _Rb_tree_rotate_left(__x_parent, __root); break; } } else { // same as above, with _M_right <-> _M_left. _Rb_tree_node_base* __w = __x_parent->_M_left; if (__w->_M_color == _S_rb_tree_red) { __w->_M_color = _S_rb_tree_black; __x_parent->_M_color = _S_rb_tree_red; _Rb_tree_rotate_right(__x_parent, __root); __w = __x_parent->_M_left; } if ((__w->_M_right == 0 || __w->_M_right->_M_color == _S_rb_tree_black) && (__w->_M_left == 0 || __w->_M_left->_M_color == _S_rb_tree_black)) { __w->_M_color = _S_rb_tree_red; __x = __x_parent; __x_parent = __x_parent->_M_parent; } else { if (__w->_M_left == 0 || __w->_M_left->_M_color == _S_rb_tree_black) { if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black; __w->_M_color = _S_rb_tree_red; _Rb_tree_rotate_left(__w, __root); __w = __x_parent->_M_left; } __w->_M_color = __x_parent->_M_color; __x_parent->_M_color = _S_rb_tree_black; if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black; _Rb_tree_rotate_right(__x_parent, __root); break; } } if (__x) __x->_M_color = _S_rb_tree_black; } return __y; } template void _Rb_global<_Dummy>::_M_decrement(_Rb_tree_base_iterator* __it) { _Base_ptr _M_node = __it->_M_node; if (_M_node->_M_color == _S_rb_tree_red && _M_node->_M_parent->_M_parent == _M_node) _M_node = _M_node->_M_right; else if (_M_node->_M_left != 0) { _Base_ptr __y = _M_node->_M_left; while (__y->_M_right != 0) __y = __y->_M_right; _M_node = __y; } else { _Base_ptr __y = _M_node->_M_parent; while (_M_node == __y->_M_left) { _M_node = __y; __y = __y->_M_parent; } _M_node = __y; } __it->_M_node = _M_node; } template void _Rb_global<_Dummy>::_M_increment(_Rb_tree_base_iterator* __it) { _Base_ptr _M_node = __it->_M_node; if (_M_node->_M_right != 0) { _M_node = _M_node->_M_right; while (_M_node->_M_left != 0) _M_node = _M_node->_M_left; } else { _Base_ptr __y = _M_node->_M_parent; while (_M_node == __y->_M_right) { _M_node = __y; __y = __y->_M_parent; } if (_M_node->_M_right != __y) _M_node = __y; } __it->_M_node = _M_node; } template _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x) { if (this != &__x) { // Note that _Key may be a constant type. clear(); _M_node_count = 0; _M_key_compare = __x._M_key_compare; if (__x._M_root() == 0) { _M_root() = 0; _M_leftmost() = _M_header._M_data; _M_rightmost() = _M_header._M_data; } else { _M_root() = _M_copy(__x._M_root(), _M_header._M_data); _M_leftmost() = _S_minimum(_M_root()); _M_rightmost() = _S_maximum(_M_root()); _M_node_count = __x._M_node_count; } } return *this; } template __iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::_M_insert(_Rb_tree_node_base* __x_, _Rb_tree_node_base* __y_, const _Value& __v) { _Link_type __x = (_Link_type) __x_; _Link_type __y = (_Link_type) __y_; _Link_type __z; if (__y == _M_header._M_data || __x != 0 || _M_key_compare(_KeyOfValue()(__v), _S_key(__y))) { __z = _M_create_node(__v); _S_left(__y) = __z; // also makes _M_leftmost() = __z // when __y == _M_header if (__y == _M_header._M_data) { _M_root() = __z; _M_rightmost() = __z; } else if (__y == _M_leftmost()) _M_leftmost() = __z; // maintain _M_leftmost() pointing to min node } else { __z = _M_create_node(__v); _S_right(__y) = __z; if (__y == _M_rightmost()) _M_rightmost() = __z; // maintain _M_rightmost() pointing to max node } _S_parent(__z) = __y; _S_left(__z) = 0; _S_right(__z) = 0; _Rb_global_inst::_Rebalance(__z, _M_header._M_data->_M_parent); ++_M_node_count; return iterator(__z); } template __iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::insert_equal(const _Value& __v) { _Link_type __y = _M_header._M_data; _Link_type __x = _M_root(); while (__x != 0) { __y = __x; __x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ? _S_left(__x) : _S_right(__x); } return _M_insert(__x, __y, __v); } template pair< _Rb_tree_iterator<_Value, _Nonconst_traits<_Value> >, bool> _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::insert_unique(const _Value& __v) { _Link_type __y = _M_header._M_data; _Link_type __x = _M_root(); bool __comp = true; while (__x != 0) { __y = __x; __comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)); __x = __comp ? _S_left(__x) : _S_right(__x); } iterator __j = iterator(__y); if (__comp) if (__j == begin()) return pair(_M_insert(__x, __y, __v), true); else --__j; if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v))) return pair(_M_insert(__x, __y, __v), true); return pair(__j, false); } template __iterator__ _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc> ::insert_unique(__iterator__ __position, const _Value& __v) { if (__position._M_node == _M_header._M_data->_M_left) { // begin() if (size() > 0 && _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) return _M_insert(__position._M_node, __position._M_node, __v); // first argument just needs to be non-null else return insert_unique(__v).first; } else if (__position._M_node == _M_header._M_data) { // end() if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v))) return _M_insert(0, _M_rightmost(), __v); else return insert_unique(__v).first; } else { iterator __before = __position; --__before; if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v)) && _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) { if (_S_right(__before._M_node) == 0) return _M_insert(0, __before._M_node, __v); else return _M_insert(__position._M_node, __position._M_node, __v); // first argument just needs to be non-null } else return insert_unique(__v).first; } } template __iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::insert_equal(__iterator__ __position, const _Value& __v) { if (__position._M_node == _M_header._M_data->_M_left) { // begin() if (size() > 0 && !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) return _M_insert(__position._M_node, __position._M_node, __v); // first argument just needs to be non-null else return insert_equal(__v); } else if (__position._M_node == _M_header._M_data) {// end() if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost()))) return _M_insert(0, _M_rightmost(), __v); else return insert_equal(__v); } else { iterator __before = __position; --__before; if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node)) && !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) { if (_S_right(__before._M_node) == 0) return _M_insert(0, __before._M_node, __v); else return _M_insert(__position._M_node, __position._M_node, __v); // first argument just needs to be non-null } else return insert_equal(__v); } } template __size_type__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::erase(const _Key& __x) { pair __p = equal_range(__x); size_type __n = 0; distance(__p.first, __p.second, __n); erase(__p.first, __p.second); return __n; } template _Rb_tree_node<_Value>* _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::_M_copy(_Rb_tree_node<_Value>* __x, _Rb_tree_node<_Value>* __p) { // structural copy. __x and __p must be non-null. _Link_type __top = _M_clone_node(__x); __top->_M_parent = __p; __STL_TRY { if (__x->_M_right) __top->_M_right = _M_copy(_S_right(__x), __top); __p = __top; __x = _S_left(__x); while (__x != 0) { _Link_type __y = _M_clone_node(__x); __p->_M_left = __y; __y->_M_parent = __p; if (__x->_M_right) __y->_M_right = _M_copy(_S_right(__x), __y); __p = __y; __x = _S_left(__x); } } __STL_UNWIND(_M_erase(__top)); return __top; } template void _Rb_tree<_Key,_Value,_KeyOfValue, _Compare,_Alloc>::_M_erase(_Rb_tree_node<_Value>* __x) { // erase without rebalancing while (__x != 0) { _M_erase(_S_right(__x)); _Link_type __y = _S_left(__x); destroy_node(__x); __x = __y; } } template void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::erase(__iterator__ __first, __iterator__ __last) { if (__first == begin() && __last == end()) clear(); else while (__first != __last) erase(__first++); } template void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::erase(const _Key* __first, const _Key* __last) { while (__first != __last) erase(*__first++); } template __iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k) { _Link_type __y = _M_header._M_data; // Last node which is not less than __k. _Link_type __x = _M_root(); // Current node. while (__x != 0) if (!_M_key_compare(_S_key(__x), __k)) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); iterator __j = iterator(__y); return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ? end() : __j; } template __const_iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k) const { _Link_type __y = _M_header._M_data; /* Last node which is not less than __k. */ _Link_type __x = _M_root(); /* Current node. */ while (__x != 0) { if (!_M_key_compare(_S_key(__x), __k)) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); } const_iterator __j = const_iterator(__y); return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ? end() : __j; } template __size_type__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::count(const _Key& __k) const { pair __p = equal_range(__k); size_type __n = 0; distance(__p.first, __p.second, __n); return __n; } template __iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::lower_bound(const _Key& __k) { _Link_type __y = _M_header._M_data; /* Last node which is not less than __k. */ _Link_type __x = _M_root(); /* Current node. */ while (__x != 0) if (!_M_key_compare(_S_key(__x), __k)) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return iterator(__y); } template __const_iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::lower_bound(const _Key& __k) const { _Link_type __y = _M_header._M_data; /* Last node which is not less than __k. */ _Link_type __x = _M_root(); /* Current node. */ while (__x != 0) if (!_M_key_compare(_S_key(__x), __k)) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return const_iterator(__y); } template __iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::upper_bound(const _Key& __k) { _Link_type __y = _M_header._M_data; /* Last node which is greater than __k. */ _Link_type __x = _M_root(); /* Current node. */ while (__x != 0) if (_M_key_compare(__k, _S_key(__x))) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return iterator(__y); } template __const_iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::upper_bound(const _Key& __k) const { _Link_type __y = _M_header._M_data; /* Last node which is greater than __k. */ _Link_type __x = _M_root(); /* Current node. */ while (__x != 0) if (_M_key_compare(__k, _S_key(__x))) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return const_iterator(__y); } inline int __black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root) { if (__node == 0) return 0; else { int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0; if (__node == __root) return __bc; else return __bc + __black_count(__node->_M_parent, __root); } } template bool _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const { if (_M_node_count == 0 || begin() == end()) return _M_node_count == 0 && begin() == end() && _M_header._M_data->_M_left == _M_header._M_data && _M_header._M_data->_M_right == _M_header._M_data; int __len = __black_count(_M_leftmost(), _M_root()); for (const_iterator __it = begin(); __it != end(); ++__it) { _Link_type __x = (_Link_type) __it._M_node; _Link_type __L = _S_left(__x); _Link_type __R = _S_right(__x); if (__x->_M_color == _S_rb_tree_red) if ((__L && __L->_M_color == _S_rb_tree_red) || (__R && __R->_M_color == _S_rb_tree_red)) return false; if (__L && _M_key_compare(_S_key(__x), _S_key(__L))) return false; if (__R && _M_key_compare(_S_key(__R), _S_key(__x))) return false; if (!__L && !__R && __black_count(__x, _M_root()) != __len) return false; } if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root())) return false; if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root())) return false; return true; } __STL_END_NAMESPACE # undef __iterator__ # undef __const_iterator__ # undef __size_type__ #endif /* __STL_TREE_C */ // Local Variables: // mode:C++ // End: